
New Upper Bounds for MAX-2-SAT and
MAX-2-CSP w.r.t. the Average Variable Degree?

Alexander Golovnev

St. Petersburg University of the Russian Academy of Sciences, St. Petersburg, Russia
alex.golovnev@gmail.com

Abstract. MAX-2-SAT and MAX-2-CSP are important NP-hard op-
timization problems generalizing many graph problems. Despite many
efforts, the only known algorithm (due to Williams) solving them in less
than 2n steps uses exponential space. Scott and Sorkin give an algorithm

with 2n(1− 2
d+1

) time and polynomial space for these problems, where d is

the average variable degree. We improve this bound to O∗(2n(1− 10/3
d+1

)) for

MAX-2-SAT and O∗(2n(1− 3
d+1

)) for MAX-2-CSP. We also prove stronger
upper bounds for d bounded from below. E.g., for d ≥ 10 the bounds im-

prove to O∗(2n(1− 3.469
d+1

)) and O∗(2n(1− 3.221
d+1

)), respectively. As a byprod-
uct we get a simple proof of an O∗(2

m
5.263) upper bound for MAX-2-CSP,

where m is the number of constraints. This matches the best known up-
per bound w.r.t. m due to Gaspers and Sorkin.

Keywords: algorithm, satisfiability, maximum satisfiability, constraint
satisfaction, maximum constraint satisfaction.

1 Introduction

1.1 Problem Statement

The maximum satisfiability problem (MAX-SAT) is, given a boolean formula in
conjunctive normal form (CNF), to find a maximum number of simultaneously
satisfiable clauses of this formula. MAX-2-SAT is restricted MAX-SAT, where
each clause contains at most two literals. MAX-SAT and MAX-2-SAT are NP-
hard problems. Moreover, it is still not known whether MAX-2-SAT can be
solved in less than O∗(2n)1 with polynomial memory.

MAX-2-SAT is a special case of the maximum 2-constraint satisfaction prob-
lem (MAX-2-CSP). In MAX-2-CSP problem one is given a graph G = (V,E)
along with sets of functions Sv : {0, 1} → Z for each vertex v and Se : {0, 1}2 → Z
for each edge e. The goal is to find an assignment φ : V → {0, 1} maximizing
the sum ∑

e=(v1,v2)∈E

Se(φ(v1), φ(v2)) +
∑
v∈V

Sv(φ(v)). (1)

? Research is partially supported by Yandex, Parallels and JetBrains.
1 As usual, O∗(·) suppresses polynomial factors

It is easy to see that MAX-2-SAT corresponds to the case when all functions
from Se are disjunctions (of variables and their negations). MAX-2-SAT and
MAX-2-CSP are important NP-hard optimization problems generalizing many
graph problems.

1.2 The Main Definitions

Let F be an instance of MAX-2-SAT or MAX-2-CSP. By n(F),m(F) we denote,
respectively, the number of vertices (variables) and the number of edges (clauses)
of the formula F . By the degree deg(x) of a vertex x we mean the number of
edges incident to x. We say variable y is the neighbor of variable x if there is
an edge (x, y) in the graph (i.e. there is a 2-clause with these variables in F).
By ∆(F) we denote the maximum vertex degree. d(F) = 2m/n is the average
vertex degree. We omit F if it is clear from the context. By the length |F | of a
formula F we mean its number of clauses.

Note that in case of MAX-2-CSP one can assume without loss of generality
that the corresponding graph does not contain multiple edges (as any two parallel
edges can be replaced by their “sum”). At the same time one cannot exclude
multiple edges from a MAX-2-SAT graph by the same argument (e.g., the graph
of a formula (x ∨ y)(¬x ∨ y)(y ∨ z) has two edges between x and y).

By (n,∆)-MAX-2-SAT and (n,∆)-MAX-2-CSP we denote, respectively,
MAX-2-SAT and MAX-2-CSP problems restricted to instances in which each
variable appears in at most ∆ 2-clauses. By Opt(F) we denote the maximal
value of (1) for F over all possible assignments (for MAX-2-SAT, this is the
maximal number of simultaneously satisfiable clauses of the formula F).

Let F be an instance of MAX-2-SAT or MAX-2-CSP, l be a literal of F . By
F [l] we denote a formula resulting from F by replacing l by 1 and ¬l by 0. Under
this assignment, all 2-clauses containing l or ¬l become 1-clauses.

1.3 Known Results

In this subsection, we review some known results for the considered problems.
Williams [1] proved that MAX-2-CSP can be solved in time O∗(2

ωn
3), where

ω ≈ 2.376 is the matrix multiplication exponent. Williams’ algorithm beats the
2n barrier at the cost of requiring exponential space. It is a big challenge of
the field to solve MAX-2-CSP in less than 2n steps with only polynomial space.
However the trivial 2n upper bound was improved for several special cases of
the considered problems. Dantsin and Wolpert [2] showed that MAX-SAT for
formulas with constant clause density can be solved faster than in O∗(2n) time
with exponential space. Kulikov and Kutzkov [3] developed an algorithm for
MAX-SAT with polynomial space (and all the algorithms mentioned below use
polynomial space) and running time cn for formulas with constant clause density,
where c < 2 is a constant.

Fürer and Kasiviswanathan [4] developed an algorithm for MAX-2-SAT with

the running time O∗(2n(1−
1
d−1)). Scott and Sorkin [5] improved this bound

to O∗(2n(1−
2
d+1)). For (n, 3)-MAX-2-SAT, Kojevnikov and Kulikov [6] proved

O∗(2
n
6) bound. This was later improved to O∗(2

n
6.7) by Kulikov and Kutzkov

[3].
Concerning the number of clauses m, the best known upper bound O∗(2

m
2.465)

for MAX-SAT was given by Chen and Kanj [7]. For MAX-2-SAT and MAX-2-
CSP, Gaspers and Sorkin [8] proved O∗(2

m
6.321) and O∗(2

m
5.263) bounds, respec-

tively.
MAX-CUT is a special case of MAX-2-CSP. Della Croce, Kaminski and

Paschos [9] developed an algorithm for MAX-CUT with the running time

O∗(2n(1−
2
∆)).

1.4 New Upper Bounds

In this paper, we present an elementary algorithm solving MAX-2-SAT and

MAX-2-CSP in time O∗(2n(1−
10/3
d+1)) and O∗(2n(1−

3
d+1)), respectively. We show

also how to improve these bounds for d bounded from below. E.g., for d ≥ 5

we get upper bounds O∗(2n(1−
3.40
d+1)) and O∗(2n(1−

3.15
d+1)) and for d ≥ 10 we get

O∗(2n(1−
3.469
d+1)) and O∗(2n(1−

3.221
d+1)). The key point of our algorithm is branching

on a vertex of maximal degree that has at least one neighbor with smaller degree.
From these improved upper bounds w.r.t. the average degree d we can derive

an upper bound O∗(2
m

5.263) w.r.t. the number of clauses for MAX-2-CSP. This
bound matches the best known upper bound by Gaspers and Sorkin [8]. We
also show that any improvement of upper bound for (n,∆)-MAX-2-CSP for any
∆ ≤ 5 would improve this record bound.

Since MAX-CUT is a special case of MAX-2-CSP, we also get an improved

upper bound O∗(2n(1−
3
d+1)) for MAX-CUT (again, the bound decreases when d

increases).

1.5 Organization of the Paper

In Section 2, we construct a simple algorithm for MAX-2-SAT and MAX-2-CSP.
The main idea of the algorithm is branching on a vertex of maximal degree.

We prove O∗(2n(1−
10/3
∆+1)) and O∗(2n(1−

3
∆+1)) upper bounds for this algorithm.

Section 3 generalizes upper bounds w.r.t. ∆ to upper bounds w.r.t. d. Also, we
apply this theorem to the algorithm from Section 2. In Section 4, we slightly
change the algorithm and get stronger upper bounds for it.

2 A Simple Algorithm for MAX-2-SAT and MAX-2-CSP

In this section, we present a simple algorithm for (n,∆)-MAX-2-SAT and (n,∆)-

MAX-2-CSP with upper boundsO∗(2n(1−
10/3
∆+1)) andO∗(2n(1−

3
∆+1)), respectively.

To solve an instance of the maximal degree ∆, our algorithm branches on a
variable of maximal degree until it gets an instance of maximal degree ∆− 1.

2.1 Removing variables of degree 2

Lemma 1. Let F be an instance of MAX-2-SAT or MAX-2-CSP containing a
vertex u of degree at most 2. Then F can be transformed in polynomial time into
a formula F ′ s.t.

1. degF ′(u) = 0,
2. for all v, degF ′(v) ≤ degF (v),
3. Opt(F) can be computed from Opt(F ′) in polynomial time.

This lemma is proved for MAX-2-SAT in [6, Lemma 3.1], and for MAX-2-CSP
in [8, Section 5.9]. It allows us to assume that a simplified formula contains
variables of degree at least 3 only.

2.2 An Algorithm

The algorithm branches on a vertex of maximal degree ∆ until it gets a graph
of maximal degree 3. It then calls a known algorithm for (n, 3)-MAX-2-SAT or
(n, 3)-MAX-2-CSP, respectively.

Denote by ni the number of vertices of degree i for i ∈ {3, . . . ,∆}. Consider
the problem (n,∆)-MAX-2-SAT ((n,∆)-MAX-2-CSP). We use the following for-
mula complexity measure:

µ = α3n3 + . . .+ α∆n∆,

where αi denotes the weight of a variable of degree i. The values of αi’s will be
determined later. We would like to find αi’s such that for any formula F the
algorithm has the running time poly(|F |) · 2µ(F).

Assume that an algorithm A solves (n,∆−1)-MAX-2-SAT ((n,∆−1)-MAX-
2-CSP) in time 2α3n3+...+α∆−1n∆−1 . Consider the following algorithm for (n,∆)-
MAX-2-SAT ((n,∆)-MAX-2-CSP).

MetaAlg
Parameter: Algorithm A for (n,∆ − 1)-MAX-2-SAT ((n,∆ − 1)-MAX-
2-CSP).
Input: F – instance of MAX-2-SAT or MAX-2-CSP.
Output: Opt(F).
Method.
1. Remove all vertices of degree < 3 (using Lemma 1).
2. If F does not contain 2-clauses, then return the result.
3. If the maximal vertex degree of F is less than ∆, then return A(F).
4. Choose a vertex x of maximal degree ∆.
5. Return max(MetaAlg(A,F [x]),MetaAlg(A,F [¬x])).

Lemma 2. Let ∆ > 3, αi < 1, for all i. If

δ = min(α∆ − α∆−1, α∆−1 − α∆−2, . . . , α4 − α3, α3) ≥ 1− α∆
∆

, (2)

then the running time of the algorithm MetaAlg for (n,∆)-MAX-2-SAT
((n,∆)-MAX-2-CSP) is 2α3n3+...+α∆n∆ .

Proof. Denote by T (n3, . . . , n∆) the running time of the algorithm on a formula
that has ni vertices of degree i, for all 3 ≤ i ≤ ∆. If there are no vertices of
degree ∆ (i.e., n∆ = 0), then MetaAlg just calls A. Then, clearly,

T (n3, . . . , n∆) ≤ 2α3n3+...+α∆−1n∆−1 = 2α3n3+...+α∆n∆ .

Assume now that there exists a vertex x of degree ∆. Then MetaAlg at step
4 branches on a vertex of degree ∆. We show that in both branches F [x] and
F [¬x], µ is reduced at least by 1.

Indeed, the measure decreases by α∆, because the algorithm branches on a
vertex of degree ∆. The degree of each neighbor of x is reduced, so the complexity
is decreased at least by δ (as δ is the minimal amount by which µ is decreased
when the degree of a vertex is reduced). This causes a complexity decrease of
∆ · δ. Lemma 1 guarantees that removing variables of degree 2 does not increase
µ. It follows from (2) that ∆ · δ + α∆ ≥ 1. Therefore µ decreases at least by 1.
Then

T (n3, . . . , n∆) ≤ 2 · 2α3n3+...+α∆n∆−1 + poly(|F |) ≤ 2α3n3+...+α∆n∆ + poly(|F |).

Thus, the running time of the algorithm MetaAlg is O∗(2α3n3+...+α∆n∆). ut

As easy consequence of the just proved lemma is an upper bound O∗(2αn), where
α = max(α∆, . . . α3). From αi < 1 and (2) we conclude that αi’s increase with
i, which means that α = α∆.

It is known [3] that (n, 3)-MAX-2-SAT can be solved in time O∗(2n/6.7). Also,
the fact that vertices of degree at most 2 can be removed implies that (n, 3)-
MAX-2-CSP can be solved in O∗(2n/4). Indeed, when branching on a vertex of
degree 3 we can remove all its neighbors in both branches (so, the number of
vertices is decreased at least by 4).

Corollary 1. The following algorithm solves MAX-2-SAT (MAX-2-CSP) in

O∗(2n(1−
10/3
∆+1)) (O∗(2n(1−

3
∆+1))) time.

SimpleAlg
Input: F – an instance of MAX-2-SAT or MAX-2-CSP.
Output: Opt(F).
Method.
1. Remove all vertices of degree < 3 (using Lemma 1).
2. If F does not contain 2-clauses, then return the result.
3. If the maximal vertex degree of F is 3, then call the known algorithm

for (n, 3)-MAX-2-SAT or (n, 3)-MAX-2-CSP, respectively.
4. Choose a vertex x of maximal degree ∆.
5. Return max(SimpleAlg(F [x]),SimpleAlg(F [¬x])).

Proof. SimpleAlg is obtained from MetaAlg. As a parameter A SimpleAlg
takes himself if i > 3 and described algorithms if i = 3. We will choose αi
satisfying (2).

As mentioned above, (n, 3)-MAX-2-SAT ((n, 3)-MAX-2-CSP) can be solved
by SimpleAlg in O∗(2n/6.7) (O∗(2n/4)) time. Hence, to minimize max(α3, α4),
according to (2), we can choose α3 and α4 as follows:

MAX-2-SAT: α3 =
1

6
, α4 =

1

3

MAX-2-CSP: α3 =
1

4
, α4 =

2

5
.

Thus, we get upper bounds O∗(2n/3) and O∗(22n/5) for (n, 4)-MAX-2-SAT and
(n, 4)-MAX-2-CSP, respectively. Now let ∆ > 4. To (2) to hold we can set αi as
follows:

αi =
1 + i · αi−1

i+ 1
. (3)

Below we state several simple properties of αi’s that will be needed in further
analysis.

• αi = 1− 4 1−α3

i+1 .
By expanding (3), one gets:

αi =
1 + i · αi−1

i+ 1
=

1 + i · 1+(i−1)αi−2

i

i+ 1
=

2 + (i− 1)αi−2
i+ 1

= . . . =
i− 3 + 4α3

i+ 1
= 1− 4

1− α3

i+ 1
. (4)

• αi < 1.
This follows immediately from the previous property and the fact that α3 <
1.

• αi increases with i.
This follows immediately from αi = 1− 4 1−α3

i+1 .

• αi − αi−1 = 1−αi
i .

This follows from (3).

For MAX-2-SAT (α3 = 1
6) we get: α∆ = 1 − 10/3

∆+1 . For MAX-2-CSP (α3 = 1
4):

α∆ = 1− 3
∆+1 .

Show that these αi satisfy the condition of the lemma. First, SimpleAlg
solves (n,∆ − 1)-MAX-2-SAT ((n,∆ − 1)-MAX-2-CSP) in 2α3n3+...+α∆−1n∆−1

time by induction.
It remains to show that (2) holds. First, show that α3 ≥ 1−α∆

∆ , for ∆ ≥ 4.

1− α∆
∆

≤
1− 1 + 10/3

∆+1

∆
≤ 10

3∆(∆+ 1)
≤ 10

3 · 4 · (4 + 1)
≤ 1

6
≤ α3.

Now show that αi − αi−1 ≥ 1−α∆
∆ for i ≤ ∆.

From properties of αi we know that αi − αi−1 = 1−αi−1

i+1 . αi increases, so for

i < ∆, 1−αi−1

i+1 > 1−α∆
∆ . Hence, αi − αi−1 = 1−αi−1

i+1 > 1−α∆
∆ for i < ∆.

For i = ∆, αi − αi−1 = 1−α∆
∆ . ut

The described algorithm has the running time O∗(2n(1−
10/3
∆+1)) and

O∗(2n(1−
3

∆+1)) for MAX-2-SAT and MAX-2-CSP, respectively. Note that our
algorithm is based on upper bound 2n/6 [6], while a stronger bound 2n/6.7 [3] is
known. The latter bound would not improve our algorithm as for smaller α3 one
needs a larger α4 to satisfy α3 ≥ 1−α4

4 from (2).

The presented algorithm already improves the known bounds O∗(2n(1−
1

∆−1))

[4] and O∗(2n(1−
2

∆+1)) [5] w.r.t. ∆. In Section 4, we further improve these bounds
by changing the algorithm slightly.

3 Going from the Maximal Degree to the Average Degree

In this section, we generalize the results of the previous section from the maximal
degree to the average degree. Informally, we show that the worst case of the
considered algorithm is achieved in case when all the vertices have the same
degree (and so d = ∆). In this section we consider only simplified formulas (i.e.
formulas without vertices of degree less than 3).

Theorem 1. If an algorithm X solves MAX-2-SAT (MAX-2-CSP) in time
O∗(2α3n3+...+α∆n∆) and for all i > 3,

2αi ≥ αi+1 + αi−1, (5)

then the algorithm X solves MAX-2-SAT (MAX-2-CSP) in time
O∗(2n(αD+ε(αD+1−αD))), where D = bdc, ε = d − D and d = 2m

n is the
average vertex degree.

Proof. As d is the average degree of the simplified graph,

3n3 + 4n4 + . . . ∆n∆ = nd. (6)

Subtract from (6) the equation n3 + n4 + . . .+ n∆ = n multiplied by d:

∆∑
i=3

(i− d)ni = 0.

By substitution d by D + ε in this equality, we get

∆∑
i=3

(i−D)ni = εn. (7)

Let σ = αD+1 − αD. Show that

niαi ≤ niαD + ni(i−D)σ. (8)

Condition (5) can be written as follows:

αi − αi−1 ≥ αi+1 − αi.

Then, for all i ≤ D,

αi+1 − αi ≥ αi+2 − αi+1 ≥ . . . ≥ αD+1 − αD = σ.

Hence
αi ≤ αi+1 − σ ≤ αi+2 − 2σ ≤ . . . ≤ αD + (i−D)σ.

Therefore αini ≤ αDni + σ(i − D)ni, for all i ≤ D. By the same argument,
αini ≤ αDni + σ(i−D)ni, for all i ≥ D.

Then the exponent of the running time of the algorithm is

α3n3 + . . .+ α∆n∆ ≤ αDn3 + σ(3−D)n3 + . . .+ αDn∆ + σ(∆−D)n∆ =

αD(n3 + n4 + . . .+ n∆) + σ

∆∑
i=3

(i−D)ni = αDn+ σ

∆∑
i=3

(i−D)ni
(by(7))

=

αDn+ σεn = n(αD + ε(αD+1 − αD)).

ut
It can be shown that this bound holds also for formulas containing variables

of degree less than 3 for MAX-2-CSP with average degree d ≥ 3 and for MAX-
2-SAT with average degree d ≥ 4.

Corollary 2. The algorithm SimpleAlg solves MAX-2-SAT (MAX-2-CSP) in

time O∗(2n(1−
10/3
d+1)) (O∗(2n(1−

3
d+1))).

Proof. From (3):

αi+1 =
1 + αi(i+ 1)

i+ 2
, αi−1 =

αi(i+ 1)− 1

i
.

Then

αi+1 + αi−1 =
αi(i+ 1) + 1

i+ 2
+
αi(i+ 1)− 1

i
=

2αi +
1− αi
i+ 2

+
αi − 1

i
= 2αi − (1− αi)(

1

i
− 1

i+ 2
) < 2αi.

Therefore (5) holds. From Theorem 1 it follows that the exponent of the running
time is αD + ε(αD+1 − αD).

To prove O∗(2n(1−
10/3
d+1)) and O∗(2n(1−

3
d+1)) upper bounds for MAX-2-SAT

and MAX-2-CSP it remains to show that αD + ε(αD+1 − αD) ≤ 1− 4 1−α3

d+1 .

We know that αi = 1− 4 1−α3

i+1 .

αD + ε(αD+1 − αD) = (1− ε)αD + εαD+1 =

1− ε− 4
(1− ε)(1− α3)

D + 1
+ ε− 4

ε(1− α3)

D + 2
= 1− 4

(1− α3)(D + 2− ε)
(D + 1)(D + 2)

=

1− 4
(1− α3)(D + 2− ε)(D + 1 + ε)

(D + 1)(D + 2)(D + 1 + ε)
= 1− 4

(1− α3)((D + 1)(D + 2) + ε− ε2)

(D + 1)(D + 2)(D + 1 + ε)
<

1− 4
1− α3

D + 1 + ε
= 1− 4

1− α3

d+ 1
.

ut

4 An Algorithm for MAX-2-SAT and MAX-2-CSP

Recall that δ = min(α∆ − α∆−1, α∆−1 − α∆−2, . . . , α4 − α3, α3) is the minimal
amount by which µ is decreased when the degree of a vertex is decreased. The
algorithm from Section 2 at each iteration branches on a vertex of maximal
degree ∆. Therefore the complexity measure decreases at least by α∆ + ∆ · δ.
In Corollary 1 we showed that δ = α∆ − α∆−1, and in accordance with this we
choose α∆ such that

α∆ +∆ · δ = α∆ +∆(α∆ − α∆−1) = 1.

Therefore we get α∆ = 1+∆α∆−1

∆+1 .
We now improve these bounds. To do this, at each iteration we choose a

branching vertex such that it has a neighbor with degree less than ∆. Then we
can choose α∆ based on the following equation:

α∆ + (∆− 1)(α∆ − α∆−1) + (α∆−1 − α∆−2) = 1.

Then

α∆ =
1 + α∆−2 + (∆− 2)α∆−1

∆
. (9)

We present an algorithm for which the recurrence (9) holds.

Max2Alg
Input: F – instance of MAX-2-SAT or MAX-2-CSP.
Output: Opt(F).
Method.
1. Remove all vertices of degree < 3 (using Lemma 1).
2. If F does not contain 2-clauses, then return the result.
3. If the formula F has connected components F1 and F2, then

return Max2Alg(F1) + Max2Alg(F2).
4. If the maximal vertex degree of F is 3, then call the known algorithm

for (n, 3)-MAX-2-SAT or (n, 3)-MAX-2-CSP, respectively.
5. If F contains a vertex of maximal degree ∆ that has at least

one neighbor whose degree is not maximal, then let x be
this vertex. Otherwise, let x be any vertex of maximal degree.

6. Return max(Max2Alg(F [x]),Max2Alg(F [¬x])).

The algorithm Max2Alg is SimpleAlg extended by two steps (given in
bold).

Lemma 3. If

1. Algorithm called at step 4 solves (n, 3)-MAX-2-SAT ((n, 3)-MAX-2-CSP) in
time O∗(2α3n),

2. δi = min(αi − αi−1, . . . , α4 − α3, α3),
for each i:

αi + (i− 1)δi + δi−1 ≥ 1, (10)

then the algorithm Max2Alg solves MAX-2-SAT (MAX-2-CSP) in time
O∗(2α3n3+...+α∆n∆+τ), where τ =

∑
i(1− τi),

τi = αi + iδi.

Proof. We prove this by induction on the number of vertices. Again we use
the formula complexity measure µ =α3n3 + . . . + α∆n∆. By T (n3, . . . , n∆) we
denote the running time of the algorithm on formula with ni vertices of degree
i, 3 ≤ i ≤ ∆.

It is clear that connected components of an input formula can be handled
independently. This is done at the step 4 of the algorithm. So, below we assume
that the graph of the formula is connected.

If there is both a vertex of degree ∆ and a vertex of degree less than ∆, then
recursive calls decrease µ at least by 1. Indeed, we branch on a vertex x of degree
∆ and we decrease µ by α∆. We choose x such that x has a neighbor of degree
less than ∆. This neighbor causes a complexity decrease of at least δ∆−1. Each
of the remaining ∆− 1 neighbors decrease µ at least by δ∆. It follows from (10),
that α∆ + (i− 1)δ∆ + δ∆−1 ≥ 1. Therefore,

T (n3, . . . , n∆) ≤ 2·2α3n3+...+α∆n∆+τ−1+poly(|F |) ≤ 2α3n3+...+α∆n∆+τ+poly(|F |),

Now assume that the graph contains degree ∆ variables only. Since during
the work of the algorithm the degrees of variables can only decrease such a graph
cannot appear in this branch again. So, at this iteration the algorithm makes two
recursive calls for formulas whose complexity measure is less than the complexity
of the initial formula at least by τ∆.

T (n3, . . . , n∆) ≤ 2 · 2k · 2α3n3+...+α∆n∆−k−τ∆+
∑∆−1
i=3 (1−τi) + poly(|F |)

= 2α3n3+...+α∆n∆+
∑∆
i=3(1−τi) + poly(|F |),

where k is the number of iterations of the algorithm while maximal degree is
∆. ut

Corollary 3. If for all i > 3,

2αi ≥ αi+1 + αi−1, αi − αi−1 ≤ α3,

then the running time of Max2Alg is

O∗(2n(αD+ε(αD+1−αD))),

where D = bdc, d = D + ε, d = 2m
n is the average degree of the vertices.

Proof. It can be shown by induction on i, that αi ≥ 1 − 4
i+1 = i−3

i+1 From the
corollary condition it follows that αi−αi−1 decreases with increasing i. Therefore
δi = αi − αi−1. Then

τ =

∆∑
i=3

(1− τi) =

∆∑
i=3

(1− αi − iδi) =

∆∑
i=3

(1− αi − iαi + iαi−1) =

∆− 2− (∆+ 1)α∆ = ∆(1− α∆) +O(1) = ∆(1− ∆− 3

∆+ 1
) +O(1) = O(1).

We use Theorem 1 to complete the proof. ut

It is easy to show that αi’s, chosen by (9), satisfy the condition of Corollary 3,
so we have the bounds w.r.t. d. We get the following sequence for MAX-2-SAT:
α3 = 1/6, α4 = 1/3, α5 = 13/30, α6 = 23/45, and the following sequence for
MAX-2-CSP: α3 = 1/4, α4 = 3/8, α5 = 19/40, α6 = 131/240. At each step we
can continue computing αi’s with weaker equality (4). This gives us an explicit
formula for αi for all i, if αk is already computed from a stronger equality (9):

αi =
i− k + (k + 1)αk

i+ 1
=

1− k + 1− (k + 1)αk
i+ 1

= 1− k + 1

i+ 1
(1− αk). (11)

The values of the first αk for MAX-2-SAT and MAX-2-CSP are shown in
Table 1. According to the table we can calculate the running time of Max2Alg
for graphs with the average degree i. The running time is O∗(2nαi).

Table 1. The values of αk for 3 ≤ k ≤ 10

d MAX-2-SAT MAX-2-CSP

3 1/6 ≈ 0.1666 1/4 ≈ 0.2500

4 1/3 ≈ 0.3333 3/8 ≈ 0.3750

5 13/30 ≈ 0.4333 19/40 ≈ 0.4750

6 23/45 ≈ 0.5111 131/240 ≈ 0.5458

7 359/630 ≈ 0.5698 1009/1680 ≈ 0.6005

8 1553/2520 ≈ 0.6162 8651/13440 ≈ 0.6436

9 14827/22680 ≈ 0.6537 82069/120960 ≈ 0.6784

10 155273/226800 ≈ 0.6846 855371/1209600 ≈ 0.7071

Consider, e.g., the case k = 5. From (11) for MAX-2-SAT αi = 1− 3.4
d+1 , for

MAX-2-CSP αi = 1 − 3.15
d+1 , if d ≥ 5. For k = 8, αi = 1 − 3.45

d+1 for MAX-2-SAT,

αi = 1− 3.20
d+1 for MAX-2-CSP, if d ≥ 8. So, the running time of Max2Alg for

MAX-2-SAT (MAX-2-CSP) is O∗(2n(1−
3.45
d+1)) (O∗(2n(1−

3.20
d+1))), if d ≥ 8.

The upper bounds w.r.t. d imply upper bounds w.r.t. m. Indeed, n = 2m
d , so

the running time is O∗(2
2m(αD+ε(αD+1−αD))

d). For MAX-2-CSP, the minimum of

this function is at d = 5 and is equal to O∗(2
m

5.263). This matches the best known
upper bound for MAX-2-CSP w.r.t. m [8].

5 Further Directions

To improve the upper bounds for MAX-2-SAT it is enough to improve any αi,
i ≥ 4. All the subsequent αi’s will also be improved recursively. We can improve
bounds from Section 4 for (n,∆)-MAX-2-SAT by using item 5 of Lemma 4.1
in [3], saying that a neighbor of a variable x of degree 3 in at least one of two
branches F [x] and F [¬x] is not just eliminated by simplification rules, but is
assigned a constant. Using this lemma and Lemma 3 we can get α4 = 1/3.43.
Also for small i, αi can be chosen using the algorithm from [8].

Also, as shown in Section 4, improving an upper bound for either (n, 3)-,
(n, 4)-, or (n, 5)-MAX-2-CSP w.r.t. n, gives an improved upper bound for MAX-
2-CSP w.r.t. m (the number of clauses).

Acknowledgments

I would like to thank my supervisor Alexander S. Kulikov for help in writing
this paper and valuable comments.

References

1. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theoretical Computer Science 348(2-3) (2005) 357–365

2. Dantsin, E., Wolpert, A.: MAX-SAT for formulas with constant clause density
can be solved faster than in O(2n) time. In: Proceedings of the 9th International
Conference on Theory and Applications of Satisfiability Testing. Volume 4121 of
Lecture Notes in Computer Science. (2006) 266–276

3. Kulikov, A., Kutzkov, K.: New upper bounds for the problem of maximal satisfia-
bility. Discrete Mathematics and Applications 19 (2009) 155–172

4. Fürer, M., Kasiviswanathan, S.P.: Exact Max 2-Sat: Easier and Faster. In: Proceed-
ings of the 33rd conference on Current Trends in Theory and Practice of Computer
Science. SOFSEM 2007, Springer-Verlag (2007) 272–283

5. Scott, A.D., Sorkin, G.B.: Linear-programming design and analysis of fast algo-
rithms for Max 2-CSP. Discrete Optimization 4(3-4) (2007) 260–287

6. Kojevnikov, A., Kulikov, A.S.: A new approach to proving upper bounds for MAX-2-
SAT. In: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
Algorithm. SODA 2006 (2006) 11–17

7. Chen, J., Kanj, I.: Improved exact algorithms for Max-Sat. Discrete Applied Math-
ematics 142(1-3) (2004) 17–27

8. Gaspers, S., Sorkin, G.B.: A universally fastest algorithm for Max 2-Sat, Max 2-
CSP, and everything in between. (2009) 606–615

9. Croce, F.D., Kaminski, M., Paschos, V.: An exact algorithm for MAX-CUT in
sparse graphs. Operations Research Letters 35(3) (2007) 403–408

