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Abstract. The best known approximation ratio for the shortest super-
string problem is 2 11

23
(Mucha, 2012). In this note, we improve this bound

for the case when the length of all input strings is equal to r, for r ≤ 7.
E.g., for strings of length 3 we get a 1 1

3
-approximation. An advantage

of the algorithm is that it is extremely simple both to implement and to
analyze. Another advantage is that it is based on de Bruijn graphs. Such
graphs are widely used in genome assembly (one of the most important
practical applications of the shortest common superstring problem). At
the same time these graphs have only a few applications in theoretical
investigations of the shortest superstring problem.

1 Introduction

1.1 Problem Statement

The superstring problem (also known as shortest common superstring problem,
SCS, or shortest superstring problem, SSP) is: given n strings s1, . . . , sn to find
a shortest string containing each si as a substring. By r-superstring problem
(or just r-SCS) we denote the SCS problem for the special case when all input
strings have length exactly r. Gallant et al. [10] showed that both SCS over the
binary alphabet and 3-SCS are NP-hard, while 2-SCS can be solved in linear
time. Crochemore et al. [7] proved that 2-SCS with multiplicities can be solved
in quadratic time. (Note however that when both parameters, the length of
input strings and the size of the alphabet, are bounded by constants then the
problem degenerates since then the number of possible input strings is bounded
by a constant.) The problem has received a lot of attention as it is interesting
as a purely theoretical problem and has many practical applications including
genome assembly and data compression.

In this note, we present a simple polynomial time algorithm that finds an
(r2+r−4)/(4r−6)-approximation to r-SCS. This is better than the best known
approximation ratio 2 11

23 by Mucha [16] for r = 3, . . . , 7. The algorithm first
finds an approximate longest traveling salesman path in the overlap graph. It
then finds an approximate shortest rural postman path in the de Bruijn graph.
We show that if a permutation of the input strings given by one of these two
paths does not give a good enough superstring then the other permutation does.



1.2 General Setting

For strings s and t by overlap(s, t) we denote the longest suffix of s that is also
a prefix of t. By prefix (s, t) we denote the first |s| − |overlap(s, t)| symbols of s.
Similarly, suffix (s, t) is the last |t| − |overlap(s, t)| symbols of t. Clearly, for any
strings s and t,

prefix(s, t) ◦ overlap(s, t) = s, overlap(s, t) ◦ suffix(s, t) = t .

s

t

prefix(s, t) suffix(s, t)
overlap(s, t)

E.g.,
overlap(ABACBA, BABCA) = BA, prefix(ABACBA, BABCA) = ABAC .

For a non-empty string s, by prefix (s) and suffix (s) we denote the string resulting
from s by removing the last and the first symbol, respectively.

Now let S = {s1, . . . , sn} be a set of strings over an alphabet Σ and s be
a superstring of S. By OPT(S) we denote the length of a shortest possible
superstring for S. A compression of s (w.r.t. S) is

|s1|+ |s2|+ · · ·+ |sn| − |s| .

Clearly minimizing the length of a superstring corresponds to maximizing the
compression.

2 Known Results for SCS and Related Graph Problems

2.1 Superstring Problem

Improving the approximation ratio for the SCS problem is interesting both from
practical and theoretical points of view. In this subsection, we review known
results in this direction. Table 1 shows the sequence of known approximation
algorithms and inapproximability results (under the P 6=NP assumption) both
for minimizing the length and maximizing the compression of superstrings. The
well-known Greedy Conjecture [4] says that repeatedly combining two strings
with maximal overlap gives a 2-approximation for SCS. Blum et al. [4] proved
that this simple algorithm has ratio 4, and Kaplan and Shafrir [13] improved the
ratio to 3.5.

Vassilevska [25] showed that an α-approximation of SCS over the binary
alphabet implies an α-approximation over any alphabet. Hence, approximating
SCS over the binary alphabet cannot be easier than for an arbitrary alphabet.



ratio authors year

approximating SCS

3 Blum, Jiang, Li, Tromp and Yannakakis [4] 1991

2 8
9

Teng, Yao [23] 1993

2 5
6

Czumaj, Gasieniec, Piotrow, Rytter [8] 1994

2 50
63

Kosaraju, Park, Stein [15] 1994

2 3
4

Armen, Stein [1] 1994

2 50
69

Armen, Stein [2] 1995

2 2
3

Armen, Stein [3] 1996

2 25
42

Breslauer, Jiang, Jiang [5] 1997

2 1
2

Sweedyk [21] 1999

2 1
2

Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005

2 1
2

Paluch, Elbassioni, van Zuylen [18] 2012

2 11
23

Mucha [16] 2013

approximating compression

1
2

Tarhio, Ukkonen [22] 1988
1
2

Turner [24] 1989
2
3

Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005
2
3

Paluch, Elbassioni, van Zuylen [18] 2012

inapproximability for SCS

1 1
17245

Ott [17] 1999

1 1
1216

Vassilevska [25] 2005

1 1
332

Karpinski, Schmied [14] 2012

inapproximability for compression

1 1
11216

Ott [17] 1999

1 1
1071

Vassilevska [25] 2005

1 1
203

Karpinski, Schmied [14] 2012

Table 1: Known approximation ratios and inapproximability results for length
and compression of superstrings



Note that SCS is a typical permutation problem: if we know the order of the
input strings in a shortest superstring then we can recover this superstring by
overlapping the strings in this given order. For this reason, it will be convenient
for us to identify a superstring with the order of input strings in it. Below we
describe several related graph permutation problems.

2.2 Prefix/overlap Graphs and Traveling Salesman Problem

Many known approximation algorithms for SCS work with the so-called overlap
graph. The overlap graph OG(S) of the set of strings S = {s1, . . . , sn} is a
complete weighted directed graph on a set of vertices V = {1, . . . , n}. The weight
of an edge from i to j equals |overlap(si, sj)|. It is easy to see that solving SCS
corresponds to solving the asymmetric maximum traveling salesman path (MAX-
ATSP) problem in OG(S) where one is asked to find a longest path visiting each
vertex of the graph exactly once (such a path is called Hamiltonian). Note that
the length of any Hamiltonian path in this graph equals the compression of the
corresponding superstring. The best known approximation ratio 2/3 for MAX-
ATSP is due to Kaplan et al. [12]. This immediately gives a 2/3-approximation
for the compression. Also, Breslauer et al. [5] showed that an α-approximation
for MAX-ATSP implies a 3.5 − 1.5α approximation for SCS. Plugging in the
result by Kaplan et al. [12] gives a 2.5-approximation for SCS.

An alternative way is to find a minimum traveling salesman path (MIN-
ATSP) in the prefix graph PG(S) where vertices i and j are joined by an edge of
weight |prefix(si, sj)|. However MIN-ATSP cannot be approximated within any
polynomial time computable function unless P=NP [20].

2.3 De Bruijn Graphs and Rural Path Problem

Another important concept is the de Bruijn graph DG(S). In this graph each
input string si ∈ S is represented as a directed (unweighted) edge from prefix(si)
to suffix(si). De Bruijn graphs are widely used in genome assembly, one of the
practical applications of the SCS problem [19]. A useful property of de Bruijn
graphs is the following: if S is the set of all substrings of length k of some
unknown string s (this is called a k-spectrum of s) then we can solve SCS for S
in polynomial time. Indeed, in this case there is an Eulerian path in the de Bruijn
graph DG(S) spelling the string s. The advantage is that an Eulerian path in
a graph can be found in linear time (as opposed to Hamiltonian path that is
NP-hard to find). The found Eulerian path in DG(S) does not necessarily need
to spell the initial string s (as a graph may contain many Eulerian paths) but
it spells a shortest superstring. See Figure 1 for an illustration. A more detailed
description of this algorithm can be found, e.g., in [19].

In general, solving the r-SCS problem corresponds to finding a shortest rural
postman path in the following extended de Bruijn graph EDG(S): the set of
vertices is Σr−1, and every two vertices s and t are joined by a directed edge of
weight |suffix(s, t)|. A path t1, . . . , tk spells a string of length

|t1|+ |suffix(t1, t2)|+ |suffix(t2, t3)|+ · · ·+ |suffix(tk−1, tk)| .
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Fig. 1: Solving SCS for a k-spectrum of an unknown string s is easy. (a) De Bruijn
graph of a set of strings {CDEB, CDBC, DBCD, BCDB, BCDE}. (b) An Eulerian path
in this graph spells a shortest superstring BCDBCDEB.

Thus, the extended de Bruijn graph may be viewed as a weighted analogue of
de Bruijn graph. The shortest directed rural postman path (DRPP) problem is:
given a graph and a subset of edges to find a shortest path going through all
these edges. DRPP has many practical applications (see, e.g., [9], [11]), and many
papers study heuristic algorithms for it ([6], [9], [11]). At the same time almost
no non-trivial theoretical bounds are known for DRPP.

This approach is particularly useful for solving 2-SCS. For this, we first con-
struct the de Bruijn graph of the given set of 2-strings, then for each weakly
connected component we add edges between imbalanced vertices (i.e., vertices
with non-zero difference of in-degree and out-degree) so that the resulting com-
ponent contains an Eulerian path. Finally, we add edges between components
so that the graph contains an Eulerian path. Figure 2 gives an example. For a
more detailed explanation of this algorithm see [10]. Crochemore et al. [7] used
a similar technique to solve 2-SCS with multiplicities.

Note that the algorithm described above works for 2-SCS, but not for general
r-SCS for the following reason: in case of 2-SCS, strings from different weakly
connected components do not share letters (and hence have empty overlap) so
the components can be traversed in any order.

3 Algorithm

In this section, we present a simple (r2+r−4)/(4r−6)-approximation algorithm
for the r-SCS problem. This ratio is better than the best known ratio 2 11

23 [16]
for r ≤ 7. Before presenting the algorithm we explain its main idea for the case
of 3-strings.

3.1 Informally

Let S ⊆ Σ3 be a set of n strings of length 3. Note that n + 2 ≤ OPT(S) ≤ 3n
(the former inequality corresponds to the case when in a shortest superstring all
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Fig. 2: 2-SCS can be solved in polynomial time. (a) de Bruijn graph of a set of
strings {KL, DB, DE, CK, BD, DA}. (b) After adding an edge ED each weakly
connected component contains an Eulerian path. (c) The string DBDEDACKL
spelled by a path going through all the edges is a shortest superstring.

input strings have overlaps of size 2, the latter one corresponds to the case when
the input strings do not overlap at all in a shortest superstring). Note that in the
two extreme cases when OPT(S) = n+2 or OPT(S) = 3n a shortest superstring
can be easily found. Indeed, if OPT(S) = n+2 then S is the set of all substrings
of length 3 of an unknown superstring of length n + 2. Such a superstring can
be found by traversing an Eulerian path in the de Bruijn graph of S, DG(S).
On the other hand, if OPT(S) = 3n then the input strings just do not overlap
with each other and any concatenation of them is a shortest superstring. The
case OPT(S) = n + 2 corresponds to the maximal possible compression while
the case OPT(S) = 3n corresponds to the minimal (i.e., zero) compression.

The algorithm proceeds as follows. We first construct the overlap graph
OG(S) and find a 2/3-approximation of the maximum TSP path in it. Such
a path provides a good approximation to OPT(S) in case OPT(S) is large.

We then construct the de Bruijn graph DG(S). Note that this graph can be
viewed as the de Bruijn graph of a set of strings of length 2 over the alphabet
Σ2. Namely, in the original de Bruijn graph a string ABC is represented as an
edge from AB to BC. This edge can be viewed as corresponding to the string
(AB)(BC) of length 2 over the new alphabet. We then find a shortest superstring
to this new set of 2-strings (recall that 2-SCS can be solved exactly in polynomial
time) and translate the found solution back to the original problem. This gives
a good approximation in case OPT(S) is small. The crucial fact is that if two
input strings overlap a lot, then the corresponding 2-strings also overlap a lot
and hence many overlaps are found by an algorithm for 2-SCS.



3.2 Formally

We are now ready to give all the details, see Algorithm 3.1. Note that the algo-
rithm is quite easy to implement. Its only black-box part is a 2/3-approximation
of MAX-ATSP. A recent algorithm achieving this ratio is due to Paluch et al. [18]
and it is essentially based on finding a maximum weight matching. Thus, the
running time of the presented algorithm is O(n3 ·

∑n
i=1 |si|) = O(n4).

Algorithm 3.1 (r2 + r − 4)/(4r − 6)-approximation algorithm r-SCS.
Input: S = {s1, . . . , sn} ⊆ Σr.
Output: A superstring of S that is at most (r2 + r − 4)/(4r − 6) times longer than a

shortest superstring.

// first, find a long traveling salesman path in the overlap graph
1: let π be a 2/3-approximate maximum traveling salesman path in OG(S)

// then, find a short rural postman path in the de Bruijn graph
2: let S ′ = {s′1, . . . , s′n} ⊆ Σ2

1 be a set of 2-strings over the alphabet Σ1 = Σr−1; s′i is
the 2-string consisting of prefix of si of length r− 1 and suffix of si of length r− 1

3: let π1 be a shortest superstring for the set of 2-strings S ′
4: return the better one among π and π1

Theorem 1. Algorithm 3.1 finds an α(r)-approximation for r-SCS where

α(r) =
r2 + r − 4

4r − 6
.

Proof. Let H be a shortest Hamiltonian path in OG(S). Then clearly

OPT(S) = rn− w(H) ,

where w(H) is the weight of H. A 2/3-approximate maximum traveling salesman
path has weight at least 2w(H)/3. Thus, the permutation π gives a superstring
of length at most rn − 2w(H)/3 (formally, to get a superstring from a permu-
tation one just overlaps all the strings in this given order). The corresponding
approximation ratio is

rn− 2w(H)/3

rn− w(H)
. (1)

Now let u denote the number of edges of weight at most (r − 2) in H.
Then the number of edges of weight exactly (r − 1) in H is (n − 1 − u). Then
w(H) ≤ (r − 1)(n− 1− u) + (r − 2)u and hence

u ≤ (r − 1)(n− 1)− w(H) . (2)

Note that

overlap(s′i, s
′
j) =

{
1 if overlap(si, sj) = r − 1,
0 otherwise.
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Fig. 3: Plots of r−2x/3
r−x and (r2−2r+2)−(r−1)x

r−x for r = 3, 4, 5 and 0 ≤ x ≤ r − 1.

Since S ′ is a 2-SCS instance, a shortest superstring for S ′ has the maximal
possible number of overlaps of size 1. This number is in turn equal to the maximal
possible number of overlaps of size r − 1 for S. Since the number of overlaps of
size r−1 in H is (n−1−u) the length of a shortest superstring for S ′ has length
at most 2n− (n− 1− u) = n+ u+ 1. Hence π1 gives a superstring of length at
most rn− (r − 1)(n− 1− u) in S. Because of (2), this is at most

rn− (r − 1)(n− 1− (r − 1)(n− 1) + w(H)) < (r2 − 2r + 2)n− (r − 1)w(H) .

The corresponding approximation ratio is

(r2 − 2r + 2)n− (r − 1)w(H)

rn− w(H)
. (3)

From (1) and (3) and a simple observation that 0 ≤ w(H)/n ≤ (r − 1) we
conclude that the approximation ratio of the constructed algorithm is

α(r) = max
0≤x≤r−1

{
min

{
r − 2x/3

r − x
,
(r2 − 2r + 2)− (r − 1)x

r − x

}}
.

Fig. 3 shows plots of the considered functions for r = 3, 4, 5.
By taking the derivatives it is easy to see that the former function increases

while the latter one decreases on [0, r − 1]. This means that the maximum of
their minimum is attained at x where they meet, namely

x =
r2 − 3r + 2

r − 5/3
.

Plugging in this x gives

α(r) =
r2 + r − 4

4r − 6
.

ut
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