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Abstract. Let G be a complete directed graph with n vertices and inte-
ger edge weights in range [0, M]. It is well known that an optimal Trav-
eling Salesman Problem (T'SP) in G can be solved in 2" time and space
(all bounds are given within a polynomial factor of the input length, i.e.,
poly(n,log M)) and this is still the fastest known algorithm. If we allow
a polynomial space only, then the best known algorithm has running
time 4"n'°¢™. For TSP with bounded weights there is an algorithm with
1.657" - M running time. It is a big challenge to develop an algorithm
with 2" time and polynomial space. Also, it is well-known that TSP can-
not be approximated within any polynomial time computable function
unless P=NP.

In this short note we propose a very simple algorithm that, for any
0 < e < 1, finds (14 ¢)-approximation to asymmetric TSP in 2"~ * time
and 71 - poly(n,log M) space. Thereby, for any fixed e, the algorithm
needs 2" steps and polynomial space to compute (1 + ¢)-approximation.

Keywords: TSP; traveling salesman problem; asymmetric traveling
salesman problem; approximation scheme; exponential algorithm.

1 Introduction

1.1 Problem Statement

A cycle in a graph is called Hamiltonian if it visits every vertex exactly
once. The Traveling Salesman Problem (TSP) is, given a complete graph
G = (V, E) with nonnegative integer edge weights, to find a Hamiltonian
cycle of minimal weight. Metric TSP is TSP restricted to graphs with
edge costs satisfying the triangle inequality. Directed (or asymmetric)
TSP is a version of TSP on directed graphs.

1.2 Exact Algorithms

Bellman [1], Held and Karp [2] developed a dynamic programming al-
gorithm for TSP. It solves TSP in O*(2")" time and space. This is

1 O*(-) suppresses polynomial factors of the input length, that is poly(n,log M) where
n is the number of vertices in the input graph and M is the maximal edge weight.
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still the fastest algorithm for general TSP. The best known polynomial-
space algorithm has running time O*(4"n'°8™) (Gurevich and Shelah [3],
Bjorklund and Husfeldt [4]).

Koivisto and Parviainen [5] described a way to solve TSP in time
O* (22" tnl°e("=1) and space O*(2') for any t = n,n/2,n/4.... They
also showed time-space trade-off such that for any v2 < S < 2, TSP can
be solved in O(T™) time and O(S™) space with T'S < 4.

Kohn, Gottlieb and Kohn [6], Karp [7], Bax and Franklin [8] presented
an algorithm for TSP with O*(2" - M) running time and O*(M) space
where M is the maximal edge weight. Lokshtanov and Nederlof [9] de-
scribed a way to solve T'SP in O* (2" - M) time with only O*(1) = poly(n)
space. Bjorklund [10] developed a Monte Carlo algorithm for symmetric
TSP with running time O(1.657™ - M) and exponentially small probabil-
ity of error.

No better bounds are known for Metric TSP. It is a big challenge
to develop O*(2") = 2™ - poly(n,log M)-time algorithm for TSP with
polynomial space (see Open Problem 2.2.b, Woeginger [11]).

Eppstein [12] proposed an algorithm for TSP in cubic graphs with
running time O(1.260™) as well as an algorithm solving TSP in graphs
of degree 4 with running time O(1.890™). Iwama and Nakashima [13]
improved the bound for TSP in cubic graphs to O(1.251"). Gebauer [14]
proposed an algorithm for TSP in graphs of degree 4 with running time
0(1.733™) and exponential space.

Bjorklund, Husfeldt, Kaski and Koivisto [15] developed an algorithm
with running time O((2 — €)") for TSP in bounded-degree graphs (e
depends only on the degree of a graph).

For the Undirected Hamiltonian Cycle Problem (HC) the O*(2")
barrier was improved. Bjorklund [10] discovered an algorithm solving
HC in O(1.657™) steps using only polynomial space. The algorithm has
O*(2"/?) running time on bipartite graphs.

1.3 Approximation Algorithms

General TSP It is well-known that general TSP cannot be approx-
imated within any polynomial time computable function unless P=NP
(Sahni and Gonzalez [16]). TSP and Metric TSP are known to be strongly
NP-hard problems (see, e.g., Garey and Johnson [17]).

Undirected Metric TSP There is a 2-approximation algorithm for
Metric TSP (due to Rosenkrantz, Stearns and Lewis [18]). The best
known approximation guarantee 3/2 is achieved by Christofides’ algo-
rithm [19].

The best known lower bound is due to Karpinski, Lampis and Schmied
[20]: Undirected Metric TSP cannot be approximated in polynomial time

with a ratio better than %, unless P=NP.

Directed Metric TSP Frieze, Galbiati, Maffioli [21] showed that
directed metric TSP can be approximated with logn ratio, Bliser [22]
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improved this bound to 0.999log, n. Kaplan, Lewenstein, Shafrir and
Sviridenko [23] developed a %log3 n-approximation algorithm. Feige and
Singh [24] provided % log, n approximation. Finally, Asadpour, Goemans,
Madry, Gharan and Saberi [25] improved the ratio to O(loloign).

Karpinski, Lampis and Schmied [20] proved that Directed Metric TSP
cannot be approximated in polynomial time with a ratio better than %,
unless P=NP.

Other Special Cases Gharan, Saberi and Singh [26] developed an
algorithm with approximation factor 3/2 — & for graphic TSP. Momke
and Svensson [27] gave a 1.461-approximation algorithm for graphic
TSP. Mucha [28] improved the approximation factor to 1.444. A major
breakthrough was obtained by Arora [29],[30] and Mitchell [31], where a
polynomial-time approximation scheme (PTAS) was found for Euclidean
TSP. Very recently Bartal et al. [32] found PTAS for Doubling TSP.

(1,2)-TSP is TSP restricted to instances where all weights are equal
to one or two. Even this problem is known to be MAX-SNP hard (Pa-
padimitriou, Yannakakis [33]). Berman and Karpinski [34] designed a
8/7-approximation algorithm for (1,2)-TSP.

Approximating TSP in exponential time Boria, Bourgeois,
Escoffier, and Paschos [35] developed exponential-time approximation
scheme for TSP. They suggested the following (1 + ¢)-approximation
algorithms for Metric TSP:
— using O* (41 ~/2"pl°e ") time and polynomial space for any & < 2/3,
— using O*(217%/2") time and exponential space for any € < 2/5.

1.4 Our Results

In this note, we present a very simple algorithm that, for any fixed
e, needs O*(2") steps and polynomial space to compute a (1 + ¢)-
approximation. As stated above the best known approximation ratio
achievable in polynomial time for Undirected Metric TSP is 1.5, while
for Directed Metric TSP the best known approximation ratio achievable
in polynomial time is O(log’lgogn). And we know that if P#NP then we
cannot find %—approximation in polynomial time (see section 1.3). The
presented algorithm is able to find, e.g., a 1001/1000-approximation in
O™ (2™) steps using only a polynomial space.

The Knapsack problem is, given a set of objects with specified sizes and
profits, find a subset of objects whose total size is bounded by knapsack
capacity and total profit is maximized. Our algorithm is inspired by
FPTAS for the Knapsack problem due to Ibarra and Kim [36]. They
use the fact that Knapsack can be solved by a simple pseudopolynomial
algorithm working in time O(nW) where n is the number of items and
W is the total weight. The algorithm first divides all input weights by
some «a(e,n, W) and then invokes the pseudopolynomial algorithm. The
resulting answer might not be optimal as the weights are not just divided
by a, but also rounded after that. However a simple analysis shows that
rounding does not affect the result too much.
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We use the same idea. By OPT we denote the cost of an optimal
solution. To get a polynomial-space approximation algorithm for Asym-
metric TSP we first divide all edge weights by a big enough number «
and then use an algorithm based on inclusion-exclusion. Then it turns
out that the running time of inclusion-exclusion algorithm is 2" - OPT/«
and the weight of the resulting cycle is at most OPT + an. We choose «
satisfying the following two inequalities:

eOPT <a< eOPT.

poly(n) n

We show that the former inequality ensures that the running time of the
algorithm is O*(2"¢™*) and the space is O*(¢7!). The latter inequality
guarantees that the algorithm gives a (1 + ¢)-approximation. Finally, we
show that such « can be found within the required time and space.

To compare the obtained approximation with the result by Boria et al.
[35] we note that, for any fixed ¢ > 0, the algorithm by Boria et al. either
requires exponential space or has running time O*(c") where ¢ > 2.

2 Algorithm

Throughout the paper we assume that edge weights are positive integers.
By OPT(G) we denote the weight of an optimal traveling salesman cycle
of the graph G. Our goal is to find a tour of weight < (1 + ¢)OPT(G)
for a given £. We omit G if it is clear from the context.

2.1 Inclusion-Exclusion Algorithm

Inclusion-exclusion algorithms are based on the following well-known for-
mula (the proof can be found, e.g., in Bax [37]).

Theorem 1. Let X be a finite set and f,g be two functions defined on
all subsets of X. Let also for each A C X

g(A) =" f(B).

BCA

Then for each A C X

FA) = (=1 Plg(B). (1)

BCA

E.g., to check whether a graph G(V, E) contains a Hamiltonian path
from s to ¢t in O*(2") time and polynomial space one defines, for A C V,
f(A) as the number of walks (a walk is a path that can pass through the
same vertex more than once) of length n — 1 that go through all vertices
of A and contain no vertex outside of A. Hence, f(V) is the number of
Hamiltonian paths from s to ¢. It is not difficult to see that then g(A) is
the number of walks of length n — 1 such that all their vertices belong to
A. Tt remains to note that g(A) can be computed in polynomial time (by
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a dynamic programming algorithm or by raising the adjacency matrix of
the graph induced by A to the (n — 1)-th power).

Kohn, Gottlieb and Kohn [6], Karp [7], Bax and Franklin [8] showed
how to solve TSP in O*(2"- M) time and O(n- M +n?) space where M is
the maximum edge weight. First, we need to show that the running time
of inclusion-exclusion algorithm is in fact O*(2" - OPT) and the space is
O(n - OPT + n?).

The decision version of T'SP is to determine if a given graph G contains
a Hamiltonian cycle of weight < k for a given decision parameter k. We
show that the decision version of TSP can be solved in time O*(2"k) =
2"k - poly(n,log M) and space O* (k) = k - poly(n).

We denote the number of circuits (closed walks) in U C V of weight
< k with exactly n edges by ¢(U). Note that ¢(U) can be computed by
dynamic programming in time O(kn*) and space O(kn?). For this, let D
be an n X k X n matrix such that D[v,,t] is the number of walks w such
that w has total weight [ and exactly ¢ edges and ends in the vertex v.
The matrix D can be filled in using the following simple observation:

D[] =Y Dlu,l = I(u,v),t —1].

ueU

Thus, each cell can be computed in O(n) using the previously computed
values. Therefore the total running time will be O(kn®) and the space
is O(kn?) (the given upper bounds on the running time and space are
w.r.t. arithmetic operations. Since all the entries in D does not exceed
2" the number of bit operations can only be n times larger). By noting
that the layer DJ-, -, t] only depends on the layer D[-,-, ¢t — 1], the space
complexity can be reduced by a factor of n. Finally, note that ¢(U) =
> Dli,k —e(i,1),n —1].

We apply (1) for g(U) := ¢(U) and for f(U) denoting the number of
circuits of weight at most k with exactly n edges containing all vertices
of U and no vertices outside of U.

Algorithm 1 INCLEXCL-DECISION-TSP — solving decision version of Asym-
metric TSP in O*(2"k) time and O*(k) space.

Input: G = (V, E) — complete weighted directed graph, k& — decision parameter.
Output: the number of Hamiltonian cycles of weight at most k.

res =0
for U CV do
res = res + (—1)!VI=1Vle(U)
end for
return res

The correctness of the algorithm INCLEXCL-DECISION-TSP follows
from (1). The time complexity of the algorithm is O*(2"k) and the space
complexity is O* (k).

Binary search on k gives us the following algorithm (INCLEXCL-TSP)
for optimization version of asymmetric TSP.
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Algorithm 2 INCLEXCL-TSP — solving Asymmetric TSP in O*(2" - OPT)
time and O*(OPT) space.

Input: G = (V, E) — complete weighted directed graph.
Output: the weight of the shortest Hamiltonian cycle.

1: set k =1 and double k until INCLEXCL-DECISION-TSP(G, k)> 0
2: use binary search on the found interval to find the minimum k, s.t. INCLEXCL-
DECISION-TSP(G, k)> 0

Lemma 1. The algorithm INCLEXCL-TSP solves Asymmetric TSP in
time O*(2" - OPT) and space O*(OPT).

Proof. We use binary search to find the minimum value k, such that
INCLEXCL-DECISION-T'SP returns a positive number of cycles. The num-
ber of calls of INCLEXCL-DECISION-TSP with k£ < 20PT is O(log OPT)
that is polynomial in the input size. The running time is O*(2" - OPT)
and space is O*(OPT). O

Remark 1. The algorithm INCLEXCL-TSP is due to Karp [7]. We just
emphasize here that the running time and space can be bounded by
O*(2"™ - OPT) and O*(OPT), respectively.

Remark 2. The algorithm INCLEXCL-TSP can be adapted to produce a
cycle itself rather than simply establishing its existence.

2.2 An Algorithm for Metric TSP

We denote the (logn)-approximation algorithm mentioned in Subsec-
tion 1.3 for solving the Directed Metric TSP by APPROX-ASYM-TSP. We
suggest the following approximation scheme for Symmetric and Asym-
metric Metric TSP.

Algorithm 3 ApPROX-METRIC-TSP — (1 + ¢)-approximation of Metric TSP
in time O*(2"e~!) and space O*(¢71).

Parameter: ¢ > 0 — approximation ratio.
Input: G = (V, E) — complete weighted directed graph.
Output: a Hamiltonian cycle of weight at most (1 4+ €)OPT(G).
1: B = APPROX-ASYM-TSP(G)
2: divide all edge weights by a: w(e) = [w(e)/a], where
B-e

nlogn

3: return INCLEXCL-TSP(G)




Approximating Asymmetric TSP in Exponential Time

Lemma 2. The algorithm APPROX-METRIC-TSP finds a Hamiltonian
cycle of weight < (1+¢)OPT(G) in a graph G.

Proof. Let OPT and OPT’ denote the weight of an optimal cycle in G
before and after dividing the weights by «, respectively.

The weight RES of the found cycle is less or equal than a.- OPT’. Denote
by I = (e1,...,en) an optimal cycle of the input graph G. Then OPT’
is not greater than ) ., [w(e;)/a]. Thereby,

RES<a-OPT' <a- Z [w(e:)/a] < Z(w(ei) +a) = OPT + an.
iel i€l
Since 8 < OPT - logn, an < c¢OPT and RES < (1 +¢) - OPT. |
Lemma 3. The running time of the algorithm APPROX-METRIC-TSP
is O*(2" 4 2"e™1), the space is O*(e71).

Proof. The running time of step 1 is polynomial (see section 1.3).
By Lemma 1, the running time of step 3 is O* (2" - OPT’) and the space

is O*(OPT’). The inequalities OPT' < % +n and 8 > OPT imply

PT PTnl 1 -
opr < XL, _ OPTnlogn  nlogn 5o 1y
«@ Be €
Therefore, the running time of APPROX-METRIC-TSP is O*(2"¢™") and
the space is O*(e™1). O

2.3 An Algorithm for General TSP

In the previous subsection we considered only the metric version of TSP
because the algorithm invoked a polynomial-time approximation algo-
rithm to compute the bound 3. Now we show a way to avoid using of
approximation algorithm and extend the result to the nonmetric case of
TSP. The only difference between the algorithms are steps 2-5 of finding
4-approximation of general TSP in exponential time.

Lemma 4. The algorithm APPROX-TSP finds a Hamiltonian cycle of
weight < (14+¢)OPT(G) in a graph G.

Proof. We only need to show that after step 5, the value of 8 provides
a 4-approximation of OPT, i.e., OPT < 8 < 40OPT. Then we use the
same routine as in APPROX-METRIC-TSP.

Let Bena be the value of beta in the last iteration of the repeat-loop
(before line 4). Since the G’ of the final iteration of the repeat-loop
contains a cycle of weight < 2n, G contains a cycle of weight < 2naenqg =
2Bend, thus OPT < 28¢,4. For proving that OPT > Sena/2 let Bprev :=
Bena/2 and let aprev = Bprev/n. Note that Bprev and apres are the values
of a and S in the previous iteration of the repeat-loop. If G had a cycle of
weight at most B¢nq/2 then in the previous round, the G’ had a cycle of
weight Bprev/Qprev +n = 2n, contradicting the fact that the termination
condition was not fulfilled.

Thereby, 28enq is 4-approximation of OPT. a
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Algorithm 4 APPROX-TSP — (1+¢)-approximation of TSP in time O* (2"~ 1)
and space O*(e71).

o

o

Parameter: ¢ > 0 — approximation ratio.

Input: G = (V, E) — complete weighted directed graph.

Output: a Hamiltonian cycle of weight at most (1 4+ ¢)OPT(G).

8=1

repeat
let G’ be a graph obtained from G by dividing all edge weights by a': w'(e) =
[w(e)/a'], where

B=28
until INCLEXCL-DECISION-TSP(G',2n) > 0
divide all edge weights by a: w(e) = [w(e)/a], where

_B¢
@= 4n

return INCLEXCL-TSP(G)

Lemma 5. The running time of the algorithm APPROX-TSP is O* (2" +
2me™ 1Y), the space is O* (e ).

Proof. The running time of step 5 is O*(2" - 2n) = O*(2"), the space
is O*(2n) = O*(1). The number of calls of INCLEXCL-DECISION-TSP is
O(log,(4-OPT)) = poly(n,log M). Along the lines of Lemma 3, the run-
ning time of APPROX-TSP is O* (2™ +2"¢~!) and the space is O*(¢71).

O

Remark 3. Note that it must be difficult to improve the running time of
such an exponential approximation algorithm to O*(2" - loge™') since
using such an algorithm with ¢ = (nM + 1)™! would solve TSP exactly
in time O*(2") and polynomial space.
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