
INTRO TO ALGORITHMS
ONE-PASS ALGORITHMS

Sasha Golovnev
August 28, 2024



TEACHING ASSISTANTS

Samuel King Sidhant Saraogi

https://samuel-king.org/
https://sarsid.github.io/


ADMINISTRATIVE INFO

• Class Meetings: MW 12:30pm–1:45pm, ICC 106

• Next Class: Tuesday, 9/3

• Office Hours:
• Tuesdays 11am, St. Mary’s Hall 342C
• Thursdays 2pm, St. Mary’s Hall 354

• alexgolovnev+algo@gmail.com
• https://golovnev.org/algo/

• Canvas page for HW

http://golovnev.org/algo


ADMINISTRATIVE INFO

• Class Meetings: MW 12:30pm–1:45pm, ICC 106

• Next Class: Tuesday, 9/3

• Office Hours:
• Tuesdays 11am, St. Mary’s Hall 342C
• Thursdays 2pm, St. Mary’s Hall 354

• alexgolovnev+algo@gmail.com
• https://golovnev.org/algo/

• Canvas page for HW

http://golovnev.org/algo


ADMINISTRATIVE INFO

• Class Meetings: MW 12:30pm–1:45pm, ICC 106

• Next Class: Tuesday, 9/3

• Office Hours:
• Tuesdays 11am, St. Mary’s Hall 342C
• Thursdays 2pm, St. Mary’s Hall 354

• alexgolovnev+algo@gmail.com
• https://golovnev.org/algo/

• Canvas page for HW

http://golovnev.org/algo


ADMINISTRATIVE INFO

• Class Meetings: MW 12:30pm–1:45pm, ICC 106

• Next Class: Tuesday, 9/3

• Office Hours:
• Tuesdays 11am, St. Mary’s Hall 342C
• Thursdays 2pm, St. Mary’s Hall 354

• alexgolovnev+algo@gmail.com

• https://golovnev.org/algo/

• Canvas page for HW

http://golovnev.org/algo


ADMINISTRATIVE INFO

• Class Meetings: MW 12:30pm–1:45pm, ICC 106

• Next Class: Tuesday, 9/3

• Office Hours:
• Tuesdays 11am, St. Mary’s Hall 342C
• Thursdays 2pm, St. Mary’s Hall 354

• alexgolovnev+algo@gmail.com
• https://golovnev.org/algo/

• Canvas page for HW

http://golovnev.org/algo


ADMINISTRATIVE INFO

• Class Meetings: MW 12:30pm–1:45pm, ICC 106

• Next Class: Tuesday, 9/3

• Office Hours:
• Tuesdays 11am, St. Mary’s Hall 342C
• Thursdays 2pm, St. Mary’s Hall 354

• alexgolovnev+algo@gmail.com
• https://golovnev.org/algo/

• Canvas page for HW

http://golovnev.org/algo


TEXTBOOKS
• Primary Textbook:

• Cormen, Leiserson, Rivest, Stein.
Introduction to algorithms.

• Additional textbooks:
• Dasgupta, Papadimitriou, Vazirani.
Algorithms.

• Kulikov, Pevzner. Ace Your Next Coding
Interview by Learning Algorithms through
Programming and Puzzle Solving.

• Kleinberg, Tardos. Algorithm Design.
• Erickson. Algorithms. Online Draft.

https://jeffe.cs.illinois.edu/teaching/algorithms/


TEXTBOOKS
• Primary Textbook:

• Cormen, Leiserson, Rivest, Stein.
Introduction to algorithms.

• Additional textbooks:
• Dasgupta, Papadimitriou, Vazirani.
Algorithms.

• Kulikov, Pevzner. Ace Your Next Coding
Interview by Learning Algorithms through
Programming and Puzzle Solving.

• Kleinberg, Tardos. Algorithm Design.
• Erickson. Algorithms. Online Draft.

https://jeffe.cs.illinois.edu/teaching/algorithms/


TEXTBOOKS
• Primary Textbook:

• Cormen, Leiserson, Rivest, Stein.
Introduction to algorithms.

• Additional textbooks:
• Dasgupta, Papadimitriou, Vazirani.
Algorithms.

• Kulikov, Pevzner. Ace Your Next Coding
Interview by Learning Algorithms through
Programming and Puzzle Solving.

• Kleinberg, Tardos. Algorithm Design.
• Erickson. Algorithms. Online Draft.

https://jeffe.cs.illinois.edu/teaching/algorithms/


TEXTBOOKS
• Primary Textbook:

• Cormen, Leiserson, Rivest, Stein.
Introduction to algorithms.

• Additional textbooks:
• Dasgupta, Papadimitriou, Vazirani.
Algorithms.

• Kulikov, Pevzner. Ace Your Next Coding
Interview by Learning Algorithms through
Programming and Puzzle Solving.

• Kleinberg, Tardos. Algorithm Design.

• Erickson. Algorithms. Online Draft.

https://jeffe.cs.illinois.edu/teaching/algorithms/


TEXTBOOKS
• Primary Textbook:

• Cormen, Leiserson, Rivest, Stein.
Introduction to algorithms.

• Additional textbooks:
• Dasgupta, Papadimitriou, Vazirani.
Algorithms.

• Kulikov, Pevzner. Ace Your Next Coding
Interview by Learning Algorithms through
Programming and Puzzle Solving.

• Kleinberg, Tardos. Algorithm Design.
• Erickson. Algorithms. Online Draft.

https://jeffe.cs.illinois.edu/teaching/algorithms/


HOMEWORK

• 5-6 Homework (50% of grade)

• Midterm Exam (mid October) (25% of grade)

• Final Exam(≈ Dec 13) (25% of grade)

• Extra Credit for in-class Participation



HOMEWORK

• 5-6 Homework (50% of grade)

• Midterm Exam (mid October) (25% of grade)

• Final Exam(≈ Dec 13) (25% of grade)

• Extra Credit for in-class Participation



HOMEWORK

• 5-6 Homework (50% of grade)

• Midterm Exam (mid October) (25% of grade)

• Final Exam(≈ Dec 13) (25% of grade)

• Extra Credit for in-class Participation



HOMEWORK

• 5-6 Homework (50% of grade)

• Midterm Exam (mid October) (25% of grade)

• Final Exam(≈ Dec 13) (25% of grade)

• Extra Credit for in-class Participation



ACADEMIC INTEGRITY

• We take academic integrity seriously

• Permitted refs: listed textbook, lecture notes,
course staff & students

• No search of solutions, No ChatGPT

• Can work in groups of 2-3 people, must write
up your own solutions and list all group
members



ACADEMIC INTEGRITY

• We take academic integrity seriously

• Permitted refs: listed textbook, lecture notes,
course staff & students

• No search of solutions, No ChatGPT

• Can work in groups of 2-3 people, must write
up your own solutions and list all group
members



ACADEMIC INTEGRITY

• We take academic integrity seriously

• Permitted refs: listed textbook, lecture notes,
course staff & students

• No search of solutions, No ChatGPT

• Can work in groups of 2-3 people, must write
up your own solutions and list all group
members



ACADEMIC INTEGRITY

• We take academic integrity seriously

• Permitted refs: listed textbook, lecture notes,
course staff & students

• No search of solutions, No ChatGPT

• Can work in groups of 2-3 people, must write
up your own solutions and list all group
members



TOPICS OVERVIEW

• Divide and Conquer

• Greedy Algorithms

• Dynamic Programming

• Graph Algorithms

• Advanced Topics: Algorithms for Bid Data,
Randomized and Approximation Algorithms



TOPICS OVERVIEW

• Divide and Conquer

• Greedy Algorithms

• Dynamic Programming

• Graph Algorithms

• Advanced Topics: Algorithms for Bid Data,
Randomized and Approximation Algorithms



TOPICS OVERVIEW

• Divide and Conquer

• Greedy Algorithms

• Dynamic Programming

• Graph Algorithms

• Advanced Topics: Algorithms for Bid Data,
Randomized and Approximation Algorithms



TOPICS OVERVIEW

• Divide and Conquer

• Greedy Algorithms

• Dynamic Programming

• Graph Algorithms

• Advanced Topics: Algorithms for Bid Data,
Randomized and Approximation Algorithms



TOPICS OVERVIEW

• Divide and Conquer

• Greedy Algorithms

• Dynamic Programming

• Graph Algorithms

• Advanced Topics: Algorithms for Bid Data,
Randomized and Approximation Algorithms



TODAY’S LECTURE

• Algorithmic Thinking

• Efficient algorithms

• Next Lecture: Asymptotic notation



TODAY’S LECTURE

• Algorithmic Thinking

• Efficient algorithms

• Next Lecture: Asymptotic notation



TODAY’S LECTURE

• Algorithmic Thinking

• Efficient algorithms

• Next Lecture: Asymptotic notation



ALGORITHMS

• Pseudocode

• Correctness

• Running Time



ALGORITHMS

• Pseudocode

• Correctness

• Running Time



ALGORITHMS

• Pseudocode

• Correctness

• Running Time



Missing Number



MISSING NUMBER

• Input contains n distinct numbers in range
{0, . . . ,n}

• Return the only missing number

• Efficient algorithm?



MISSING NUMBER

• Input contains n distinct numbers in range
{0, . . . ,n}

• Return the only missing number

• Efficient algorithm?



MISSING NUMBER

• Input contains n distinct numbers in range
{0, . . . ,n}

• Return the only missing number

• Efficient algorithm?



STREAMING ALGORITHM

• Compute sum of all elements in stream:

s = x1 + . . . xn

• Sum of all numbers in range {0, . . . ,n} is
S = n(n+1)

2

• Missing number is S− s = n(n+1)
2 − s

• One pass through stream, efficient processing,
O(log n) space



STREAMING ALGORITHM

• Compute sum of all elements in stream:

s = x1 + . . . xn

• Sum of all numbers in range {0, . . . ,n} is
S = n(n+1)

2

• Missing number is S− s = n(n+1)
2 − s

• One pass through stream, efficient processing,
O(log n) space



STREAMING ALGORITHM

• Compute sum of all elements in stream:

s = x1 + . . . xn

• Sum of all numbers in range {0, . . . ,n} is
S = n(n+1)

2

• Missing number is S− s = n(n+1)
2 − s

• One pass through stream, efficient processing,
O(log n) space



STREAMING ALGORITHM

• Compute sum of all elements in stream:

s = x1 + . . . xn

• Sum of all numbers in range {0, . . . ,n} is
S = n(n+1)

2

• Missing number is S− s = n(n+1)
2 − s

• One pass through stream, efficient processing,
O(log n) space



TWO MISSING ELEMENTS

• Stream contains n− 1 distinct numbers
in range {0, . . . ,n}

• Return both missing numbers

• Efficient algorithm?



TWO MISSING ELEMENTS

• Stream contains n− 1 distinct numbers
in range {0, . . . ,n}

• Return both missing numbers

• Efficient algorithm?



TWO MISSING ELEMENTS

• Stream contains n− 1 distinct numbers
in range {0, . . . ,n}

• Return both missing numbers

• Efficient algorithm?



STREAMING ALGORITHM

• Compute sum and sum of squares of all
elements in stream:

s = x1 + . . . xn−1
t = x21 + . . . x2n−1

• Sum of all numbers in range {0, . . . ,n} is
S = n(n+1)

2
Sum of squares of all numbers in range
{0, . . . ,n} is T = n(n+1)(2n+1)

6



STREAMING ALGORITHM

• Compute sum and sum of squares of all
elements in stream:

s = x1 + . . . xn−1
t = x21 + . . . x2n−1

• Sum of all numbers in range {0, . . . ,n} is
S = n(n+1)

2
Sum of squares of all numbers in range
{0, . . . ,n} is T = n(n+1)(2n+1)

6



STREAMING ALGORITHM

• If missing numbers are a and b, then

a+ b = S− s
a2 + b2 = T− t

• One pass through stream, efficient processing,
O(log n) space



STREAMING ALGORITHM

• If missing numbers are a and b, then

a+ b = S− s
a2 + b2 = T− t

• One pass through stream, efficient processing,
O(log n) space



Majority Element



MAJORITY ELEMENT

• Stream has element occuring > n/2 times

• Find it!



MAJORITY ELEMENT

• Stream has element occuring > n/2 times

• Find it!



STREAMING ALGORITHM

• count← 0; m←⊥

• For each element xi of Stream:
• If count = 0, then m← xi and count← 1
• ElseIf xi = m, then count++
• Else count--

• Return m



STREAMING ALGORITHM

• count← 0; m←⊥

• For each element xi of Stream:

• If count = 0, then m← xi and count← 1
• ElseIf xi = m, then count++
• Else count--

• Return m



STREAMING ALGORITHM

• count← 0; m←⊥

• For each element xi of Stream:
• If count = 0, then m← xi and count← 1

• ElseIf xi = m, then count++
• Else count--

• Return m



STREAMING ALGORITHM

• count← 0; m←⊥

• For each element xi of Stream:
• If count = 0, then m← xi and count← 1
• ElseIf xi = m, then count++

• Else count--
• Return m



STREAMING ALGORITHM

• count← 0; m←⊥

• For each element xi of Stream:
• If count = 0, then m← xi and count← 1
• ElseIf xi = m, then count++
• Else count--

• Return m



STREAMING ALGORITHM

• count← 0; m←⊥

• For each element xi of Stream:
• If count = 0, then m← xi and count← 1
• ElseIf xi = m, then count++
• Else count--

• Return m



EXAMPLE



PROOF



ANOTHER VIEW



MISRA-GRIES ALGORITHM

• count1, . . . , countk ← 0; m1, . . . ,mk ←⊥

• For each element xi of Stream:
• If xi = mj, then countj ++
• Else

• Let countj be min in count1, . . . countk
• If countj = 0, then mj = xi; countj = 1
• Else count1 --, . . . , countk --

• Return m1, . . . ,mk



MISRA-GRIES ALGORITHM

• count1, . . . , countk ← 0; m1, . . . ,mk ←⊥

• For each element xi of Stream:
• If xi = mj, then countj ++
• Else

• Let countj be min in count1, . . . countk
• If countj = 0, then mj = xi; countj = 1
• Else count1 --, . . . , countk --

• Return m1, . . . ,mk


