GEMS OF TCS

EASY AND HARD PROBLEMS

Sasha Golovnev
August 23, 2023
• Theoretical/Mathematical viewpoint
THIS COURSE

• Theoretical/Mathematical viewpoint

• Topic overview
This Course

• Theoretical/Mathematical viewpoint

• Topic overview
 • Algorithms

• Computational Complexity

• Cryptography

• Learning
THIS COURSE

• Theoretical/Mathematical viewpoint

• Topic overview
 • Algorithms
 • Computational Complexity
This Course

- Theoretical/Mathematical viewpoint
- Topic overview
 - Algorithms
 - Computational Complexity
 - Cryptography
THIS COURSE

• Theoretical/Mathematical viewpoint

• Topic overview
 • Algorithms
 • Computational Complexity
 • Cryptography
 • Learning
THEORETICAL COMPUTER SCIENCE
$P \implies Q$

Mathematical logic
THEORETICAL COMPUTER SCIENCE

\[P \implies Q \]

Mathematical logic

Computability theory
THEORETICAL COMPUTER SCIENCE

\[P \iff Q \]

Mathematical logic

Computability theory

Information theory
THEORETICAL COMPUTER SCIENCE

$P \Rightarrow Q$

Mathematical logic

Computability theory

Information theory

Learning, neural nets
Theoretical Computer Science

\[P \implies Q \]

- Mathematical logic
- Computability theory
- Information theory

- Learning, neural nets
- Computational complexity

\[P = NP? \]
THEORETICAL COMPUTER SCIENCE

$P \implies Q$

- **Mathematical logic**
- **Learning, neural nets**
- **$P = NP?$**

- **Computability theory**
- **Computational complexity**

- **Information theory**
- **Cryptography**
THEORETICAL COMPUTER SCIENCE

$P \implies Q$

Mathematical logic

Computability theory

Information theory

$P = NP?$

Computational complexity

Cryptography

Learning, neural nets

Quantum Algorithms
THEORETICAL COMPUTER SCIENCE

\[P \implies Q \]

Mathematical logic

Computability theory

Information theory

Learning, neural nets

\[P = NP? \]

Computational complexity

Cryptography

Quantum Algorithms

Machine learning
THEORETICAL COMPUTER SCIENCE

$P \implies Q$

Mathematical logic

Computability theory

Information theory

$P = NP$?

Computational complexity

Cryptography

Learning, neural nets

Quantum Algorithms

Machine learning

Data Science
Classes: MW 11:00am–12:15pm, Healy 103
ADMINISTRATIVE INFO

• Classes: MW 11:00am–12:15pm, Healy 103
• Office Hours: M 2:00pm–3:00pm, STM 354

Prerequisites: Algorithms or Theory of Computation, a Programming Language

Webpage: https://golovnev.org/gems

Grading: ≈ 5 Problem Sets

email: alexgolovnev+gems@gmail.com
Administrative Info

- **Classes**: MW 11:00am–12:15pm, Healy 103
- **Office Hours**: M 2:00pm–3:00pm, STM 354
- **Office Hours**: Th 2:00pm–3:00pm, STM 342
- **Prerequisites**: Algorithms or Theory of Computation, a Programming Language
- **Webpage**: https://golovnev.org/gems
- **Grading**: ≈ 5 Problem Sets
- **Email**: alexgolovnev+gems@gmail.com
ADMINISTRATIVE INFO

• Classes: MW 11:00am–12:15pm, Healy 103
• Office Hours: M 2:00pm–3:00pm, STM 354
• Office Hours: Th 2:00pm–3:00pm, STM 342
• Prerequisites: Algorithms or Theory of Computation, a Programming Language
ADMINISTRATIVE INFO

• Classes: MW 11:00am–12:15pm, Healy 103
• Office Hours: M 2:00pm–3:00pm, STM 354
• Office Hours: Th 2:00pm–3:00pm, STM 342
• Prerequisites: Algorithms or Theory of Computation, a Programming Language
• Webpage: https://golovnev.org/gems
• Classes: MW 11:00am–12:15pm, Healy 103
• Office Hours: M 2:00pm–3:00pm, STM 354
• Office Hours: Th 2:00pm–3:00pm, STM 342
• Prerequisites: Algorithms or Theory of Computation, a Programming Language
• Webpage: https://golovnev.org/gems
• Grading: ≈ 5 Problem Sets
• Classes: MW 11:00am–12:15pm, Healy 103
• Office Hours: M 2:00pm–3:00pm, STM 354
• Office Hours: Th 2:00pm–3:00pm, STM 342
• Prerequisites: Algorithms or Theory of Computation, a Programming Language
• Webpage: https://golovnev.org/gems
• Grading: ≈ 5 Problem Sets
• email: alexgolovnev+gems@gmail.com
COURSE BEGINS

- Running time of an algorithm
• Running time of an algorithm
 • \(100n^2 \) vs \(n^3/10 \)
Course Begins

- Running time of an algorithm
 - $100n^2$ vs $n^3/10$
 - $100n^2$ vs $2^n/100$
Course Begins

- Running time of an algorithm
 - $100n^2$ vs $n^3/10$
 - $100n^2$ vs $2^n/100$
- Complexity class \textbf{P}: Problems whose solution can be \textit{found} efficiently
• Running time of an algorithm
 • $100n^2$ vs $n^3/10$
 • $100n^2$ vs $2^n/100$

• Complexity class \mathbf{P}: Problems whose solution can be found efficiently

• Complexity class \mathbf{NP}: Problems whose solution can be verified efficiently
The main open problem in Computer Science

Is P equal to NP?
The main open problem in Computer Science

Is P equal to NP?

Millenium Prize Problem

Clay Mathematics Institute: 1M prize for solving the problem
• If $P = NP$, then all NP-problems can be solved in polynomial time.
• If $P=NP$, then all NP-problems can be solved in polynomial time.

• If $P \neq NP$, then there exist NP-problems that cannot be solved in polynomial time.
NP-COMPLETE PROBLEMS

• The “hardest” problems in NP
NP-complete Problems

• The “hardest” problems in NP

• If any NP-complete problem can be solved in polynomial time, then all of NP can be solved in polynomial time
NP-complete Problems

- The “hardest” problems in NP
- If any NP-complete problem can be solved in polynomial time, then all of NP can be solved in polynomial time
- If one NP-complete problem cannot be solved in polynomial time, then all NP-complete problems cannot be solved in polynomial time
NP-complete Problems

• The “hardest” problems in \(\text{NP} \)

• If any \(\text{NP} \)-complete problem can be solved in polynomial time, then all of \(\text{NP} \) can be solved in polynomial time

• If one \(\text{NP} \)-complete problem cannot be solved in polynomial time, then all \(\text{NP} \)-complete problems cannot be solved in polynomial time

• Later we’ll show \(\text{NP} \)-complete problems exist!
Car Fueling
Distance with full tank 300 mi.

Minimize the number of stops at gas stations
EXAMPLE

Distance with full tank 300 mi.

Minimize the number of stops at gas stations
CAR FUELING. SOLUTION

• “Greedy” algorithm
CAR FUELING. SOLUTION

• “Greedy” algorithm

• Runs in linear time $O(n)$, where n is the size of the input (# of gas stations)
CAR FUELING. SOLUTION

• “Greedy” algorithm

• Runs in linear time $O(n)$, where n is the size of the input (# of gas stations)

• Easy problem
Traveling Salesman Problem (TSP)
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.

length: 15
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 11
Traveling Salesman Problem

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.

length: 9
• Classical optimization problem with countless number of real life applications (we’ll see soon)
STATUS

• Classical optimization problem with countless number of real life applications (we’ll see soon)
• No polynomial time algorithms known
STATUS

• Classical optimization problem with countless number of real life applications (we’ll see soon)

• No polynomial time algorithms known

• The best known algorithm runs in time 2^n
DELIVERING GOODS

Need to visit several points. What is the optimal order of visiting them?
TRAVELING
Traveling
TRAVELING
DRILLING A CIRCUIT BOARD

https://developers.google.com/optimization/routing/tsp/tsp
Drilling a Circuit Board

https://developers.google.com/optimization/routing/tsp/tsp
Drilling a Circuit Board

https://developers.google.com/optimization/routing/tsp/tsp
There are n mechanical components to be processed on a complex machine. After processing the i-th component, it takes t_{ij} units of time to reconfigure the machine so that it is able to process the j-th component. What is the minimum processing cost?
EUCLIDEAN TSP

- **Euclidean TSP:** instead of a complete graph, the input consists of \(n \) points
 \[p_1 = (x_1, y_1), \ldots, p_n = (x_n, y_n) \] in the plane
EUCLIDEAN TSP

- Euclidean TSP: instead of a complete graph, the input consists of \(n \) points \(p_1 = (x_1, y_1), \ldots, p_n = (x_n, y_n) \) in the plane.
- Weights are given implicitly:
 \[
d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
\]
EUCLIDEAN TSP

- **Euclidean TSP**: instead of a complete graph, the input consists of \(n \) points \(p_1 = (x_1, y_1), \ldots, p_n = (x_n, y_n) \) in the plane.

- Weights are given implicitly:

 \[d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \]

- Weights are symmetric: \(d(p_i, p_j) = d(p_j, p_i) \)
Euclidean TSP

- Euclidean TSP: instead of a complete graph, the input consists of n points $p_1 = (x_1, y_1), \ldots, p_n = (x_n, y_n)$ in the plane
- Weights are given implicitly:
 \[d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \]
- Weights are symmetric: $d(p_i, p_j) = d(p_j, p_i)$
- Weights satisfy the triangle inequality:
 \[d(p_i, p_j) \leq d(p_i, p_k) + d(p_k, p_j) \]
Finding the best permutation is easy: simply iterate through all of them and select the best one.
• Finding the best permutation is easy: simply iterate through all of them and select the best one

• But the number of permutations of n objects is $n!$
$n!$: GROWTH RATE

<table>
<thead>
<tr>
<th>n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>40320</td>
</tr>
<tr>
<td>10</td>
<td>3628800</td>
</tr>
<tr>
<td>13</td>
<td>6227020800</td>
</tr>
<tr>
<td>20</td>
<td>24329020081766400000</td>
</tr>
<tr>
<td>30</td>
<td>2652528598121910586363084800000000</td>
</tr>
</tbody>
</table>
Satisfiability Problem (SAT)
\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)\]
\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)\]

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)\]
APPLICATIONS OF SAT

• Software Engineering
• Chip testing
• Circuit design
• Automatic theorem provers
• Image analysis
• ...
k-SAT

$$\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_2 \lor \neg x_3 \lor \ldots \lor x_8)$$

ϕ is satisfiable if $\exists x \in \{0, 1\}^n: \phi(x) = 1$. Otherwise, ϕ is unsatisfiable.
k-SAT

$$
\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \\
\ldots \\
(x_2 \lor \neg x_3 \lor \ldots \lor x_8)
$$

ϕ is **satisfiable** if

$$
\exists x \in \{0,1\}^n : \phi(x) = 1.
$$

Otherwise, ϕ is **unsatisfiable**
k-SAT

\[\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_2 \lor \neg x_3 \lor \ldots \lor x_8) \]

ϕ is satisfiable if

\[\exists x \in \{0, 1\}^n : \phi(x) = 1. \]

Otherwise, ϕ is unsatisfiable

k-SAT is SAT where clause length $\leq k$
k-SAT. Examples

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)\]
\(k\text{-SAT. EXAMPLES}

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)\]

\[(x_1) \land (\neg x_2) \land (x_3) \land (\neg x_1)\]
Queen of NP-complete problems

- Cook-Levin Theorem [Coo71, Lev73]: SAT can model non-deterministic Turing machine:
 SAT is NP-complete
Cook-Levin Theorem [Coo71, Lev73]: SAT can model non-deterministic Turing machine:
SAT is NP-complete

3-SAT is NP-complete
QUEEN OF NP-COMPLETE PROBLEMS

• Cook-Levin Theorem [Coo71, Lev73]: SAT can model non-deterministic Turing machine:
 SAT is NP-complete

• 3-SAT is NP-complete

• 2-SAT is in P
Complexity of SAT

1-SAT
2-SAT
3-SAT
...
Complexity of SAT

P

1-SAT

2-SAT

3-SAT

k-SAT

SAT

NP
The SAT game