GEMS OF TCS

LINEAR PROGRAMMING

Sasha Golovnev September 25, 2023

• Optimization problems: among all solutions satisfying certain constraints find optimal one

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring
- Find minimum vertex cover

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring
- Find minimum vertex cover
- Linear programming: class of optimization problems where constraints and optimization criterion are linear functions

Avoiding Scurvy

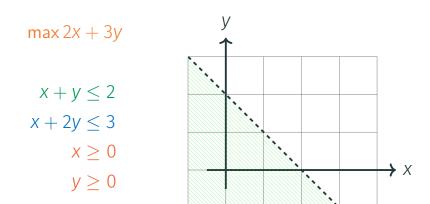
 Orange costs \$1, grapefruit costs \$1; we have budget of \$2/day

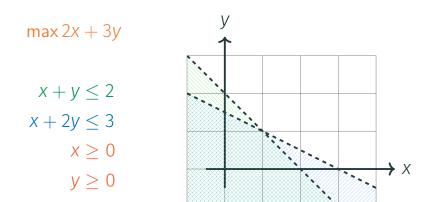
- Orange costs \$1, grapefruit costs \$1; we have budget of \$2/day
- Orange weighs 100gm, grapefruit weighs 200gm, we can carry 300gm

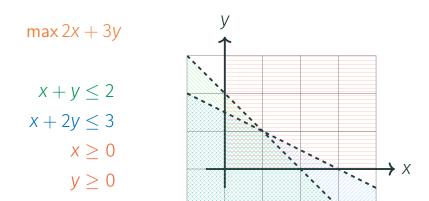
- Orange costs \$1, grapefruit costs \$1; we have budget of \$2/day
- Orange weighs 100gm, grapefruit weighs 200gm, we can carry 300gm
- Orange has 50gm of vitamin C, grapefruit has 75gm of vitamin C, maximize daily vitamin C intake.

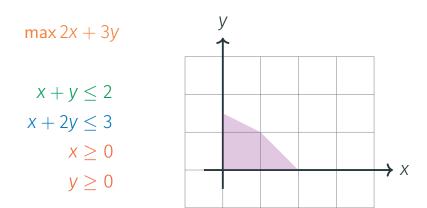
 $\max 2x + 3y$

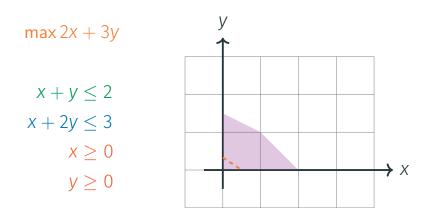
 $x + y \le 2$ $x + 2y \le 3$ $x \ge 0$ $y \ge 0$

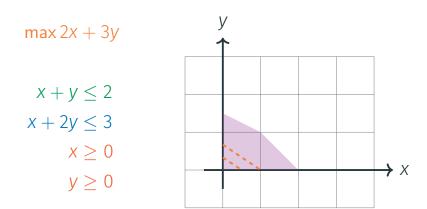


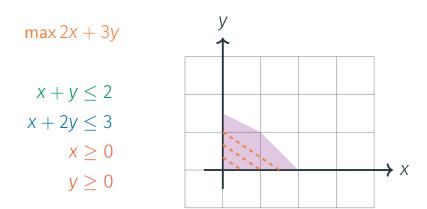


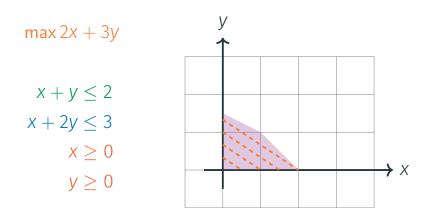


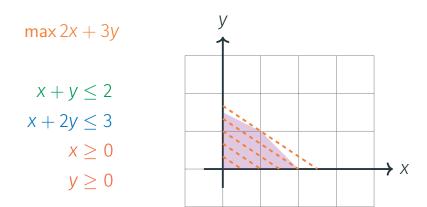












Profit Maximization

• We have 6 machines and 20 workers

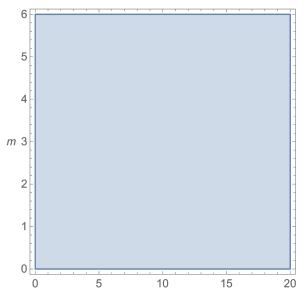
- We have 6 machines and 20 workers
- A machine takes two workers to operate

- We have 6 machines and 20 workers
- A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour

- We have 6 machines and 20 workers
- A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour
- We need to produce at most 100 chocolates/hour

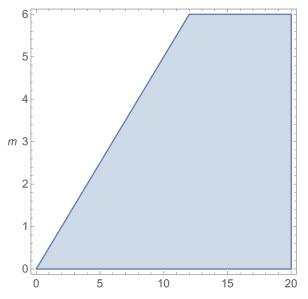
- We have 6 machines and 20 workers
- A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour
- We need to produce at most 100 chocolates/hour
- Each chocolate costs \$10, each worker gets \$40 per hour

WORKERS AND MACHINES

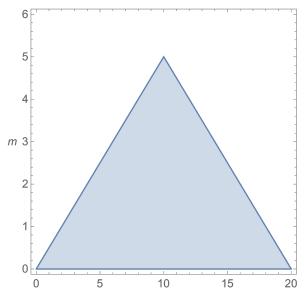


W

Two Workers Operate a Machine



CHOCOLATE DEMAND



Linear Classifier

LINEAR CLASSIFIER

• Given n_1 spam emails, and n_2 ham emails as points in \mathbb{R}^d

LINEAR CLASSIFIER

• Given n_1 spam emails, and n_2 ham emails as points in \mathbb{R}^d

• Find a linear function $h(a_1, \ldots, a_d)$ s.t.

LINEAR CLASSIFIER

• Given n_1 spam emails, and n_2 ham emails as points in \mathbb{R}^d

- Find a linear function $h(a_1, \ldots, a_d)$ s.t.
 - $h(a_1,\ldots,a_d) < 0$ for all spam emails
 - $h(a_1,\ldots,a_d) > 0$ for all ham emails

Linear Programming

• Find real numbers x_1, \ldots, x_n that satisfy linear constraints

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ge b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \ge b_2$

. . .

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \geq b_m$

LINEAR PROGRAMMING

• Find real numbers x_1, \ldots, x_n that satisfy linear constraints

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ge b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \ge b_2$

. . .

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \geq b_m$

• So that linear objective is maximized

 $C_1X_1 + C_2X_2 + \ldots + C_nX_n$

• Turn minimization problem into maximization problem:

min $C_1 X_1 + C_2 X_2 + \ldots - C_n X_n$

• Turn minimization problem into maximization problem:

min $C_1X_1 + C_2X_2 + \ldots - C_nX_n$ max $-C_1X_1 - C_2X_2 - \ldots - C_nX_n$

• Turn minimization problem into maximization problem:

min
$$C_1X_1 + C_2X_2 + \ldots - C_nX_n$$

max $-C_1X_1 - C_2X_2 - \ldots - C_nX_n$

• Turn \leq into \geq :

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$

• Turn minimization problem into maximization problem:

min
$$C_1X_1 + C_2X_2 + \ldots - C_nX_n$$

max $-C_1X_1 - C_2X_2 - \ldots - C_nX_n$

• Turn \leq into \geq :

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$ $-a_{11}x_1 - a_{12}x_2 - \ldots - a_{1n}x_n \ge -b_1$

• Turn = into \geq :

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$

• Turn = into \geq :

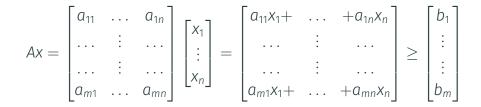
 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ge b_1$ $-a_{11}x_1 - a_{12}x_2 - \ldots - a_{1n}x_n \ge -b_1$

MATRIX FORMULATION

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$

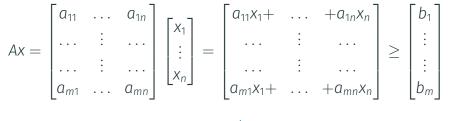
MATRIX FORMULATION Input is a matrix $A \in \mathbb{R}^{m \times n}$, and

vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$



MATRIX FORMULATION

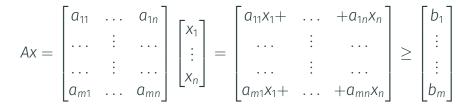
Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$



 $Ax \ge b$

MATRIX FORMULATION

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$



 $Ax \ge b$

maximize
$$cx = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = c_1 x_1 + \dots c_n x_n$$

• Kantorovich, 1939, started studying Linear Programming

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories
- Kantorovich and Koopmans won Nobel Prize in Economics in 1971

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories
- Kantorovich and Koopmans won Nobel Prize in Economics in 1971
- Dantzig's algorithm is "One of top 10 algorithms of the 20th century"

SIMPLEX METHOD

Theorem

A linear function takes its maximum and minimum values on vertices

SIMPLEX METHOD

Theorem

A linear function takes its maximum and minimum values on vertices

Start at any vertex

SIMPLEX METHOD

Theorem

A linear function takes its maximum and minimum values on vertices

- Start at any vertex
- While there is an adjacent vertex with higher profit
 - Move to that vertex

CORNER CASES

• No solutions

CORNER CASES

• No solutions

Unbounded profit

• Simplex method

- Simplex method
- Many professional packages that implement efficient algorithms for LP

- Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method

- Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method
- Projective algorithm

Algorithms for Linear Programming

- Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method
- Projective algorithm
- Recent results!

Ellipsoid Method