Gems of TCS

Linear Programming

Sasha Golovnev
September 25, 2023

Linear Programming

- Optimization problems: among all solutions satisfying certain constraints find optimal one

Linear Programming

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices

Linear Programming

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring

Linear Programming

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring
- Find minimum vertex cover

Linear Programming

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring
- Find minimum vertex cover
- Linear programming: class of optimization problems where constraints and optimization criterion are linear functions

Avoiding Scurvy

- Orange costs \$1, grapefruit costs \$1; we have budget of \$2/day
- Orange costs \$1, grapefruit costs \$1; we have budget of $\$ 2 /$ day
- Orange weighs 100 gm , grapefruit weighs 200gm, we can carry 300gm
- Orange costs \$1, grapefruit costs \$1; we have budget of $\$ 2 /$ day
- Orange weighs 100gm, grapefruit weighs 200 gm , we can carry 300gm
- Orange has 50 gm of vitamin C, grapefruit has 75 gm of vitamin C, maximize daily vitamin C intake.

Avoiding Scurvy. Plot

$\max 2 x+3 y$

$$
\begin{aligned}
x+y & \leq 2 \\
x+2 y & \leq 3 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Avoiding Scurvy. Plot

$$
\begin{aligned}
\max 2 x & +3 y \\
x+y & \leq 2 \\
x+2 y & \leq 3 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Avoiding Scurvy. Plot

$$
\begin{array}{r}
\max 2 x+3 y \\
x+y \leq 2 \\
x+2 y \leq 3 \\
x \geq 0 \\
y \geq 0
\end{array}
$$

Avoiding Scurvy. Plot

$$
\begin{array}{r}
\max 2 x+3 y \\
x+y \leq 2 \\
x+2 y \leq 3 \\
x \geq 0 \\
y \geq 0
\end{array}
$$

Avoiding Scurvy. Plot

$$
\begin{array}{r}
\max 2 x+3 y \\
x+y \leq 2 \\
x+2 y \leq 3 \\
x \geq 0 \\
y \geq 0
\end{array}
$$

Avoiding Scurvy. Plot

$$
\begin{aligned}
\max 2 x & +3 y \\
x+y & \leq 2 \\
x+2 y & \leq 3 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Avoiding Scurvy. Plot

$$
\begin{aligned}
\max 2 x & +3 y \\
x+y & \leq 2 \\
x+2 y & \leq 3 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Avoiding Scurvy. Plot

$$
\begin{aligned}
\max 2 x & +3 y \\
x+y & \leq 2 \\
x+2 y & \leq 3 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Avoiding Scurvy. Plot

$$
\begin{aligned}
\max 2 x & +3 y \\
x+y & \leq 2 \\
x+2 y & \leq 3 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
$$

Avoiding Scurvy. Plot

$$
\begin{array}{r}
\max 2 x+3 y \\
x+y \leq 2 \\
x+2 y \leq 3 \\
x \geq 0 \\
y \geq 0
\end{array}
$$

Avoiding Scurvy. Plot

$$
\begin{array}{r}
\max 2 x+3 y \\
x+y \leq 2 \\
x+2 y \leq 3 \\
x \geq 0 \\
y \geq 0
\end{array}
$$

Profit Maximization

Profit Maximization

- We have 6 machines and 20 workers

Profit Maximization

- We have 6 machines and 20 workers
- A machine takes two workers to operate

Profit Maximization

- We have 6 machines and 20 workers
- A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour

Profit Maximization

- We have 6 machines and 20 workers
- A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour
- We need to produce at most 100 chocolates/hour

Profit Maximization

- We have 6 machines and 20 workers
- A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour
- We need to produce at most 100 chocolates/hour
- Each chocolate costs \$10, each worker gets \$40 per hour

Workers and Machines

Two Workers Operate a Machine

Chocolate Demand

Linear Classifier

Linear Classifier

- Given n_{1} spam emails, and n_{2} ham emails as points in \mathbb{R}^{d}

Linear Classifier

- Given n_{1} spam emails, and n_{2} ham emails as points in \mathbb{R}^{d}
- Find a linear function $h\left(a_{1}, \ldots, a_{d}\right)$ s.t.

Linear CLASSIFIER

- Given n_{1} spam emails, and n_{2} ham emails as points in \mathbb{R}^{d}
- Find a linear function $h\left(a_{1}, \ldots, a_{d}\right)$ s.t.
- $h\left(a_{1}, \ldots, a_{d}\right)<0$ for all spam emails
- $h\left(a_{1}, \ldots, a_{d}\right)>0$ for all ham emails

Linear Programming

Linear Programming

- Find real numbers x_{1}, \ldots, x_{n} that satisfy linear constraints

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \geq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \geq b_{2} \\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \geq b_{m}
\end{aligned}
$$

Linear Programming

- Find real numbers x_{1}, \ldots, x_{n} that satisfy linear constraints

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & \geq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & \geq b_{2} \\
\ldots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & \geq b_{m}
\end{aligned}
$$

- So that linear objective is maximized

$$
c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

Equivalent Formulations

- Turn minimization problem into maximization problem:

$$
\min \quad c_{1} x_{1}+c_{2} x_{2}+\ldots-c_{n} x_{n}
$$

Equivalent Formulations

- Turn minimization problem into maximization problem:

$$
\begin{aligned}
& \min \quad C_{1} x_{1}+c_{2} x_{2}+\ldots-c_{n} x_{n} \\
& \max -C_{1} x_{1}-c_{2} x_{2}-\ldots-c_{n} x_{n}
\end{aligned}
$$

Equivalent Formulations

- Turn minimization problem into maximization problem:

$$
\begin{aligned}
& \min \quad C_{1} x_{1}+c_{2} x_{2}+\ldots-c_{n} x_{n} \\
& \max -C_{1} x_{1}-c_{2} x_{2}-\ldots-c_{n} x_{n}
\end{aligned}
$$

- Turn \leq into \geq :

$$
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1}
$$

Equivalent Formulations

- Turn minimization problem into maximization problem:

$$
\begin{aligned}
& \min \quad C_{1} x_{1}+c_{2} x_{2}+\ldots-c_{n} x_{n} \\
& \max -C_{1} x_{1}-c_{2} x_{2}-\ldots-c_{n} x_{n}
\end{aligned}
$$

- Turn \leq into \geq :

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
& \leq b_{1} \\
&- a_{11} x_{1}-a_{12} x_{2}-\ldots-a_{1 n} x_{n} \geq-b_{1}
\end{aligned}
$$

EQUIVALENT FORMULATIONS

- Turn $=$ into \geq :

$$
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1}
$$

Equivalent Formulations

- Turn $=$ into \geq :

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & \geq b_{1} \\
-a_{11} x_{1}-a_{12} x_{2}-\ldots-a_{1 n} x_{n} & \geq-b_{1}
\end{aligned}
$$

Matrix Formulation

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$

MATRIX FORMULATION

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$

$$
A x=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \vdots & \ldots \\
\ldots & \vdots & \ldots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} x_{1}+ & \ldots & +a_{1 n} x_{n} \\
\ldots & \vdots & \ldots \\
\ldots & \vdots & \ldots \\
a_{m 1} x_{1}+ & \ldots & +a_{m n} x_{n}
\end{array}\right] \geq\left[\begin{array}{c}
b_{1} \\
\vdots \\
\vdots \\
b_{m}
\end{array}\right]
$$

MATRIX FORMULATION

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$

$$
\begin{aligned}
& A x=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \vdots & \ldots \\
\ldots & \vdots & \ldots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} x_{1}+ & \ldots & +a_{1 n} x_{n} \\
\ldots & \vdots & \ldots \\
\ldots & \vdots & \ldots \\
a_{m 1} x_{1}+ & \ldots & +a_{m n} x_{n}
\end{array}\right] \geq\left[\begin{array}{c}
b_{1} \\
\vdots \\
\vdots \\
b_{m}
\end{array}\right] \\
& A x \geq b
\end{aligned}
$$

MATRIX FORMULATION

Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$

$$
\begin{gathered}
A x=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \vdots & \ldots \\
\ldots & \vdots & \ldots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} x_{1}+ & \ldots & +a_{1 n} x_{n} \\
\ldots & \vdots & \ldots \\
\ldots & \vdots & \ldots \\
a_{m 1} x_{1}+ & \ldots & +a_{m n} x_{n}
\end{array}\right] \geq\left[\begin{array}{c}
b_{1} \\
\vdots \\
\vdots \\
b_{m}
\end{array}\right] \\
A x \geq b \\
\\
\text { maximize } c x=\left[\begin{array}{lll}
c_{1} & \ldots & c_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=c_{1} x_{1}+\ldots c_{n} x_{n}
\end{gathered}
$$

History of Linear Programming

- Kantorovich, 1939, started studying Linear Programming

History of Linear Programming

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems

History of Linear Programming

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories

History of Linear Programming

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories
- Kantorovich and Koopmans won Nobel Prize in Economics in 1971

History of Linear Programming

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories
- Kantorovich and Koopmans won Nobel Prize in Economics in 1971
- Dantzig's algorithm is "One of top 10 algorithms of the 20th century"

Simplex Method

Theorem

A linear function takes its maximum and minimum values on vertices

Simplex Method

Theorem

A linear function takes its maximum and minimum values on vertices

- Start at any vertex

Simplex Method

Theorem

A linear function takes its maximum and minimum values on vertices

- Start at any vertex
- While there is an adjacent vertex with higher profit
- Move to that vertex

Corner Cases

- No solutions

Corner Cases

- No solutions
- Unbounded profit

Algorithms for Linear Programming

- Simplex method

Algorithms for Linear Programming

- Simplex method
- Many professional packages that implement efficient algorithms for LP

Algorithms for Linear Programming

- Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method

Algorithms for Linear Programming

- Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method
- Projective algorithm

Algorithms for Linear Programming

- Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method
- Projective algorithm
- Recent results!

ELLIPSOID METHOD

