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• Optimization problems: among all solutions
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• Find shortest cycle through all vertices

• Find optimal coloring

• Find minimum vertex cover

• Linear programming: class of optimization
problems where constraints and optimization
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Avoiding Scurvy



• Orange costs $1,
grapefruit costs $1;
we have budget of $2/day

• Orange weighs 100gm,
grapefruit weighs 200gm,
we can carry 300gm

• Orange has 50gm of vitamin C,
grapefruit has 75gm of vitamin C,
maximize daily vitamin C intake.
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Profit Maximization



PROFIT MAXIMIZATION

• We have 6 machines and 20 workers

• A machine takes two workers to operate

• Each machine produces 20 chocolates/hour,
each worker produces 5 chocolates/hour

• We need to produce at most 100
chocolates/hour

• Each chocolate costs $10, each worker gets $40
per hour
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WORKERS AND MACHINES



TWO WORKERS OPERATE A MACHINE



CHOCOLATE DEMAND



Linear Classifier



LINEAR CLASSIFIER

• Given n1 spam emails, and n2 ham emails as
points in Rd

• Find a linear function h(a1, . . . , ad) s.t.
• h(a1, . . . , ad) < 0 for all spam emails
• h(a1, . . . , ad) > 0 for all ham emails
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LINEAR PROGRAMMING
• Find real numbers x1, . . . , xn that satisfy linear
constraints

a11x1 + a12x2 + . . .+ a1nxn ≥ b1
a21x1 + a22x2 + . . .+ a2nxn ≥ b2

. . .

am1x1 + am2x2 + . . .+ amnxn ≥ bm

• So that linear objective is maximized

c1x1 + c2x2 + . . .+ cnxn
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EQUIVALENT FORMULATIONS
• Turn minimization problem into maximization
problem:

min c1x1 + c2x2 + . . .− cnxn

max −c1x1 − c2x2 − . . .− cnxn

• Turn ≤ into ≥:

a11x1 + a12x2 + . . .+ a1nxn ≤ b1

− a11x1 − a12x2 − . . .− a1nxn ≥ −b1
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HISTORY OF LINEAR PROGRAMMING

• Kantorovich, 1939, started studying Linear
Programming

• Dantzig, 1947, developed Simplex Method for
US Air force planning problems

• Koopmans, 1947, showed how to use LP for
analysis of economic theories

• Kantorovich and Koopmans won Nobel Prize in
Economics in 1971

• Dantzig’s algorithm is “One of top 10
algorithms of the 20th century”



HISTORY OF LINEAR PROGRAMMING

• Kantorovich, 1939, started studying Linear
Programming

• Dantzig, 1947, developed Simplex Method for
US Air force planning problems

• Koopmans, 1947, showed how to use LP for
analysis of economic theories

• Kantorovich and Koopmans won Nobel Prize in
Economics in 1971

• Dantzig’s algorithm is “One of top 10
algorithms of the 20th century”



HISTORY OF LINEAR PROGRAMMING

• Kantorovich, 1939, started studying Linear
Programming

• Dantzig, 1947, developed Simplex Method for
US Air force planning problems

• Koopmans, 1947, showed how to use LP for
analysis of economic theories

• Kantorovich and Koopmans won Nobel Prize in
Economics in 1971

• Dantzig’s algorithm is “One of top 10
algorithms of the 20th century”



HISTORY OF LINEAR PROGRAMMING

• Kantorovich, 1939, started studying Linear
Programming

• Dantzig, 1947, developed Simplex Method for
US Air force planning problems

• Koopmans, 1947, showed how to use LP for
analysis of economic theories

• Kantorovich and Koopmans won Nobel Prize in
Economics in 1971

• Dantzig’s algorithm is “One of top 10
algorithms of the 20th century”



HISTORY OF LINEAR PROGRAMMING

• Kantorovich, 1939, started studying Linear
Programming

• Dantzig, 1947, developed Simplex Method for
US Air force planning problems

• Koopmans, 1947, showed how to use LP for
analysis of economic theories

• Kantorovich and Koopmans won Nobel Prize in
Economics in 1971

• Dantzig’s algorithm is “One of top 10
algorithms of the 20th century”



SIMPLEX METHOD

Theorem
A linear function takes its maximum and
minimum values on vertices
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• While there is an adjacent vertex with
higher profit
• Move to that vertex
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• Many professional packages that implement
efficient algorithms for LP

• Ellipsoid method

• Projective algorithm

• Recent results!
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ELLIPSOID METHOD


