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AVOIDING SCURVY

- Orange costs S7,
grapefruit costs S7;
we have budget of $2/day

- Orange weighs 100gm,
grapefruit weighs 200gm,

we can carry 300gm

- Orange has 50gm of vitamin C,

grapefruit has 75gm of vitamin C,
maximize daily vitamin C intake.
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Linear programming

Input: A set of linear inequalities Ax < b.

Output: Real solution that optimizes the objec-
tive function.



Integer linear programming

Input: A set of linear inequalities Ax < b.

Output: Integer solution that optimizes the ob-
jective function,
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LP

Find a real
solution of a system of
linear inequalities

Can be solved
efficiently (Lecture 10)

ILP

Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!
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Linear Programming Solver

seTA
Linear Programming X

(max: 9 variables)

Optimize:
Objective Function:
Subject to: [ax+y<=33, | [3x+ay<=2,
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*(constraints separator: ",")

Global maximum:

Exact form | More digits

max|2x+y|4x+y533/\3x+4y529l\x20Ay20|= 17.1538 at(x, y) =
(7.92308, 1.30769)
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Linear Programming Solver
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ng X

(max: 9 variables)

Optimize:
Objective Function:
Subject to: [ax+y<=33, | [3x+ay<=29,
x>=0,

anc
More \x< =7 | ‘ ‘
More .

m (multiple constr. in a box are allowed)

**www.ordsworks.com** *(constraints separator: ",")

Global maximum:

max{2x+y|4x+y=33A3x+4y=29Ax=20Ay=0Ax=<7}=16
ar(x, y)=1(7,2)
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sETA
Linear Programming X

(max: 9 variables)

Optimize:
Objective Function:
Subject to: [ax+y<=33, | [3x+ay<=29,
x>=0,
and y>=0,
More i [x>=8 ] [ |
More i i ]
(multiple constr. in a box are allowed)

*(constraints separator: ",")

Global maximum:

max{2x+y|4x+y=33A3x+4y=29Ax=20Ay=0Ax=8}=17
ax,y) =81




BRANCHING ON X

Original
OPTa 17.1538



HEURISTIC ALGORITHMS FOR ILP



Applications



APPLICATIONS

- Scheduling
- Planning

- Networks
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connected to some vertex in C.



VERTEX COVERS

- A Vertex Cover of a graph G is a set of
vertices C such that every edge of G is
connected to some vertex in C.

- A Minimum Vertex Cover is a vertex cover of
the smallest size.
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VERTEX COVER AS ILP

- Introduce binary variable for every vertex:
X1, Xn:

- X; = 1iff x; belongs to Vertex Cover
-vie{l,....n}, 0< X, <1,x; € Z

* min ) X

- For every edge (u,v) in th graph: x, +x, > 1



IMPLEMENTATION

import networkx as nx
from mip import *

g = nx.Graph()
g.add_edges_from([(1, 2), (1, 3), (1, 5), (1, 6), (2, 5), (2, @),
(3, 4), (3, 5), (3, 6), (5, 6), (7, 0)])

m = Model()
n = g.number_of_nodes()
x = [m.add_var(var_type=BINARY) for i in range(n)]
for u, v in g.edges():

m += x[ul+x[v] >= 1
m.objective = minimize(xsum(x[i] for i in range(n)))
m.optimize()

selected = [i for i in range(n) if x[i]l.x >= 0.99]
print(“selected items: {}".format(selected))



N QUEENS

Is it possible to place n queensonann x n
board such that no two of them attack each
other?
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N QUEENS AS ILP

» n% 0/1-variables: for 0 <i,j < n, xj = 1iff
queen is placed into cell (/,))
- For0 < i< n,ith rovv contains = 1 queen:

ZXU =1
- For 0 <j < n,jth column contains = 1 queen:
ZXU:1'

- Each diagonal contains <1 queen:

n n n n
Z Z Xj <1, Z Z Xjj <1

i=1 j=1: i—j=k i=1 j=1: i+j=k



