GEMS OF TCS

INTEGER LINEAR PROGRAMMING

Sasha Golovnev
September 27, 2023
AVOIDING SCURVY

• Orange costs $1, grapefruit costs $1; we have budget of $2/day

• Orange weighs 100gm, grapefruit weighs 200gm, we can carry 300gm

• Orange has 50gm of vitamin C, grapefruit has 75gm of vitamin C, maximize daily vitamin C intake.
AVOIDING SCURVY. PLOT

\[
\max 2x + 3y
\]

\[
x + y \leq 2
\]

\[
x + 2y \leq 3
\]

\[
x \geq 0
\]

\[
y \geq 0
\]
AVOIDING SCURVY. PLOT

\[\text{max } 2x + 3y \]

\[x + y \leq 2 \]
\[x + 2y \leq 3 \]
\[x \geq 0 \]
\[y \geq 0 \]
Avoiding Scurvy. Plot

\[\text{max } 2x + 3y \]

\[x + y \leq 2 \]
\[x + 2y \leq 3 \]
\[x \geq 0 \]
\[y \geq 0 \]
AVOIDING SCURVY. PLOT

\[
\begin{align*}
\max & \quad 2x + 3y \\
\text{s.t.} & \quad x + y \leq 2 \\
& \quad x + 2y \leq 3 \\
& \quad x \geq 0 \\
& \quad y \geq 0
\end{align*}
\]
AVOIDING SCURVY. PLOT

\[\max 2x + 3y \]
\[x + y \leq 2 \]
\[x + 2y \leq 3 \]
\[x \geq 0 \]
\[y \geq 0 \]
AVOIDING SCURVY. PLOT

\[
\begin{align*}
\max & 2x + 3y \\
x + y & \leq 2 \\
x + 2y & \leq 3 \\
x & \geq 0 \\
y & \geq 0
\end{align*}
\]
AVOIDING SCURVY. PLOT

\[\text{max } 2x + 3y \]
\[x + y \leq 2 \]
\[x + 2y \leq 3 \]
\[x \geq 0 \]
\[y \geq 0 \]
\[
\text{Avoiding Scurvy. Plot}
\]

\[
\text{max } 2x + 3y
\]

\[
x + y \leq 2
\]
\[
x + 2y \leq 3
\]
\[
x \geq 0
\]
\[
y \geq 0
\]
AVOIDING SCURVY. PLOT

\[
\begin{align*}
\text{max} & \ 2x + 3y \\
x + y & \leq 2 \\
x + 2y & \leq 3 \\
x & \geq 0 \\
y & \geq 0
\end{align*}
\]
Avoiding Scurvy. Plot

\[
\text{max } 2x + 3y
\]

\[
x + y \leq 2
\]
\[
x + 2y \leq 3
\]
\[
x \geq 0
\]
\[
y \geq 0
\]
AVOIDING SCURVY. PLOT

\[
\begin{align*}
\max & \quad 2x + 3y \\
\text{s.t.} & \quad x + y \leq 2 \\
& \quad x + 2y \leq 3 \\
& \quad x \geq 0 \\
& \quad y \geq 0
\end{align*}
\]
max $2x + 3y$

$x + y \leq 2$

$x + 2y \leq 2.5$

$x \geq 0$

$y \geq 0$
AVOIDING SCURVY II

max \(2x + 3y \)

\[
\begin{align*}
x + y & \leq 2 \\
x + 2y & \leq 2.5 \\
x & \geq 0 \\
y & \geq 0
\end{align*}
\]
max $2x + 3y$

$x + y \leq 2$

$x + 2y \leq 2.5$

$x \geq 0$

$y \geq 0$
AVOIDING SCURVY II

\[\text{max } 2x + 3y \]

\[x + y \leq 2 \]
\[x + 2y \leq 2.5 \]
\[x \geq 0 \]
\[y \geq 0 \]
AVOIDING SCURVY II

\[\max 2x + 3y \]

\[x + y \leq 2 \]
\[x + 2y \leq 2.5 \]
\[x \geq 0 \]
\[y \geq 0 \]
AVOIDING SCURVY II

\[
\max 2x + 3y \\
\]
\[
x + y \leq 2 \\
x + 2y \leq 2.5 \\
x \geq 0 \\
y \geq 0
\]
Linear programming

Input: A set of linear inequalities $Ax \leq b$.

Output: Real solution that optimizes the objective function.
Integer linear programming

Input: A set of linear inequalities $Ax \leq b$.

Output: Integer solution that optimizes the objective function.
Example

\[x_1 \geq 0.5 \]
\[-x_1 + 8x_2 \geq 0 \]
\[-x_1 - 8x_2 \geq -8 \]
Example

\[x_1 \geq 0.5 \]
\[-x_1 + 8x_2 \geq 0 \]
\[-x_1 - 8x_2 \geq -8 \]
Example

\[x_1 \geq 0.5 \]

\[-x_1 + 8x_2 \geq 0 \]

\[-x_1 - 8x_2 \geq -8 \]
Example

\[x_1 \geq 0.5 \]

\[-x_1 + 8x_2 \geq 0 \]

\[-x_1 - 8x_2 \geq -8 \]
Example

\[x_1 \geq 0.5 \]

\[-x_1 + 8x_2 \geq 0 \]

\[-x_1 - 8x_2 \geq -8 \]
<table>
<thead>
<tr>
<th>LP</th>
<th>Find a real solution of a system of linear inequalities</th>
</tr>
</thead>
</table>

Can be solved efficiently (Lecture 10)

ILP

Find an **integer** solution of a system of linear inequalities

No polynomial algorithm known!
LP
Find a real solution of a system of linear inequalities
Can be solved efficiently (Lecture 10)
<table>
<thead>
<tr>
<th>LP</th>
<th>ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find a real solution of a system of linear inequalities</td>
<td>Find an integer solution of a system of linear inequalities</td>
</tr>
<tr>
<td>Can be solved efficiently (Lecture 10)</td>
<td></td>
</tr>
</tbody>
</table>

No polynomial algorithm known!
<table>
<thead>
<tr>
<th>LP</th>
<th>ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find a real solution of a system of linear inequalities</td>
<td>Find an integer solution of a system of linear inequalities</td>
</tr>
<tr>
<td>Can be solved efficiently (Lecture 10)</td>
<td>No polynomial algorithm known!</td>
</tr>
</tbody>
</table>
Algorithm for ILP

\[\text{max } 2x + y \]

\[4x + y \leq 33 \]
\[3x + 4y \leq 29 \]
\[x \geq 0 \]
\[y \geq 0 \]
\[x, y \in \mathbb{Z} \]
\textbf{Algorithm for ILP}

\[\text{max } 2x + y \]

\[4x + y \leq 33 \]
\[3x + 4y \leq 29 \]
\[x \geq 0 \]
\[y \geq 0 \]
\[x, y \in \mathbb{Z} \]
Linear Programming

(max: 9 variables)

Optimize: Max

Objective Function: 2x + y

Subject to:
4x + y \leq 33,
3x + 4y \leq 29,
x \geq 0,

and:
y \geq 0

More constraints (optional):

More constraints (optional):

(multiple constr. in a box are allowed)

www.ordsworks.com *(constraints separator: ",")*

Global maximum:

\[
\max\{2x + y \mid 4x + y \leq 33 \land 3x + 4y \leq 29 \land x \geq 0 \land y \geq 0\} \approx 17.1538 \quad \text{at} \quad (x, y) \approx (7.92308, 1.30769)
\]
Branching on x

Original
$\text{OPT} \approx 17.1538$
BRANCHING ON x

Original
$\text{OPT} \approx 17.1538$

$x \leq 7$

$x \geq 8$

Prob 1

Prob 2
\[\text{max } 2x + y \]

\[4x + y \leq 33 \]
\[3x + 4y \leq 29 \]
\[x \geq 0 \]
\[y \geq 0 \]
\[x, y \in \mathbb{Z} \]
max \(2x + y\)

\(4x + y \leq 33\)
\(3x + 4y \leq 29\)
\(x \geq 0\)
\(y \geq 0\)
\(x, y \in \mathbb{Z}\)
(max: 9 variables)

Optimize: Max

Objective Function: 2x+y

Subject to:
4x+y<=33, 3x+4y<=29,

x>=0,

and:

y>=0,

More constraints (optional):
x<=7

Global maximum:

\[\text{max}\{2x + y | 4x + y \leq 33 \land 3x + 4y \leq 29 \land x \geq 0 \land y \geq 0 \land x \leq 7\} = 16 \]

at \((x, y) = (7, 2)\)
BRANCHING ON x

Original
$\text{OPT} \approx 17.1538$

$\begin{align*}
x \leq 7 \\
x \geq 8
\end{align*}$

Prob 1
$\text{OPT} = 16$

Prob 2
(max: 9 variables)

Optimize: Max

Objective Function: \(2x + y \)

Subject to: \(4x + y \leq 33, \quad 3x + 4y \leq 29, \)
\(x \geq 0, \)
\(y \geq 0, \)

and:

More constraints (optional): \(x \geq 8 \)

More constraints (optional):

(multiple constr. in a box are allowed)

www.oridsworks.com *(constraints separator: ",")*

Global maximum:

\[
\max \{ 2x + y \mid 4x + y \leq 33 \land 3x + 4y \leq 29 \land x \geq 0 \land y \geq 0 \land x \geq 8 \} = 17
\]

at \((x, y) = (8, 1)\)
Branching on x

Original
$\text{OPT} \approx 17.1538$

$x \leq 7$

Prob 1
$\text{OPT} = 16$

$x \geq 8$

Prob 2
$\text{OPT} = 17$
HEURISTIC ALGORITHMS FOR ILP
Applications
APPLICATIONS

• Scheduling

• Planning

• Networks

• ...
Vertex Covers

- A Vertex Cover of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.
A **Vertex Cover** of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.

A **Minimum Vertex Cover** is a vertex cover of the smallest size.
VERTEX COVERS: EXAMPLES
VERTEX COVERS: EXAMPLES
VERTEX COVER AS ILP

• Introduce binary variable for every vertex: x_1, \ldots, x_n:
 • $x_i = 1$ iff x_i belongs to Vertex Cover
Vertex Cover as ILP

• Introduce binary variable for every vertex: x_1, \ldots, x_n:
 • $x_i = 1$ iff x_i belongs to Vertex Cover
• $\forall i \in \{1, \ldots, n\}$, $0 \leq x_i \leq 1$, $x_i \in \mathbb{Z}$
VERTEX COVER AS ILP

• Introduce binary variable for every vertex: x_1, \ldots, x_n:
 - $x_i = 1$ iff x_i belongs to Vertex Cover
 - $\forall i \in \{1, \ldots, n\}, \ 0 \leq x_i \leq 1, x_i \in \mathbb{Z}$

• $\min \sum_i x_i$
VERTEX COVER AS ILP

• Introduce binary variable for every vertex: x_1, \ldots, x_n:
 • $x_i = 1$ iff x_i belongs to Vertex Cover
 • $\forall i \in \{1, \ldots, n\}$, $0 \leq x_i \leq 1$, $x_i \in \mathbb{Z}$

• $\min \sum x_i$

• For every edge (u, v) in the graph: $x_u + x_v \geq 1$
```python
import networkx as nx
from mip import *

# Create a graph

g = nx.Graph()
g.add_edges_from([(1, 2), (1, 3), (1, 5), (1, 6), (2, 5), (2, 0),
                   (3, 4), (3, 5), (3, 6), (5, 6), (7, 0)])

m = Model()
n = g.number_of_nodes()
x = [m.add_var(var_type=BINARY) for i in range(n)]

for u, v in g.edges():
    m += x[u] + x[v] >= 1

m.objective = minimize(xsum(x[i] for i in range(n)))
m.optimize()

selected = [i for i in range(n) if x[i].x >= 0.99]
print("selected items: {\{\}}\".format(selected))
```
N Queens

Is it possible to place n queens on an $n \times n$ board such that no two of them attack each other?
N QUEENS AS ILP

• n^2 0/1-variables: for $0 \leq i, j < n$, $x_{ij} = 1$ iff queen is placed into cell (i, j)
N QUEENS AS ILP

- \(n^2 \) 0/1-variables: for \(0 \leq i, j < n \), \(x_{ij} = 1 \) iff queen is placed into cell \((i, j)\)
- For \(0 \leq i < n \), \(i \)th row contains \(= 1 \) queen:
\[
\sum_{j=1}^{n} x_{ij} = 1.
\]
- For \(0 \leq i < n \), \(i \)th column contains \(= 1 \) queen:
\[
\sum_{j=1}^{n} x_{ij} = 1.
\]
- Each diagonal contains \(\leq 1 \) queen:
\[
\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \leq 1.
\]
N QUEENS AS ILP

• \(n^2 \) 0/1-variables: for \(0 \leq i, j < n \), \(x_{ij} = 1 \) iff queen is placed into cell \((i, j)\)

• For \(0 \leq i < n \), \(i \)th row contains \(= 1 \) queen:
 \[
 \sum_{j=1}^{n} x_{ij} = 1.
 \]

• For \(0 \leq j < n \), \(j \)th column contains \(= 1 \) queen:
 \[
 \sum_{i=1}^{n} x_{ij} = 1.
 \]
N Queues as ILP

- n^2 0/1-variables: for $0 \leq i, j < n$, $x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \leq i < n$, ith row contains $= 1$ queen:
 \[
 \sum_{j=1}^{n} x_{ij} = 1.
 \]
- For $0 \leq j < n$, jth column contains $= 1$ queen:
 \[
 \sum_{j=1}^{n} x_{ij} = 1.
 \]
- Each diagonal contains ≤ 1 queen:
 \[
 \sum_{i=1}^{n} \sum_{j=1: i-j=k}^{n} x_{ij} \leq 1; \quad \sum_{i=1}^{n} \sum_{j=1: i+j=k}^{n} x_{ij} \leq 1
 \]