GEMS OF TCS

UNDECIDABILITY

Sasha Golovnev
October 4, 2023
ALAN TURING

1912–1954
Everything is a Bit String

- Input to an algorithm is a string
EVERYTHING IS A BIT STRING

• Input to an algorithm is a string
• Algorithm itself is a string
EVERYTHING IS A BIT STRING

• Input to an algorithm is a string
• Algorithm itself is a string
• Every string is an algorithm
EVERYTHING IS A BIT STRING

- Input to an algorithm is a string
- Algorithm itself is a string
- Every string is an algorithm
- Given input, algorithm
Everything is a Bit String

- Input to an algorithm is a string
- Algorithm itself is a string
- Every string is an algorithm
- Given input, algorithm
 - either eventually outputs some value
Everything is a Bit String

- Input to an algorithm is a string
- Algorithm itself is a string
- Every string is an algorithm
- Given input, algorithm
 - either eventually outputs some value
 - or never halts
Halting Problem
i = 0
while i <= 5:
 print('Infinite loop')
INFINITE LOOPS

```
i = 0
while i <= 5:
    print('Infinite loop')
```

```
x = True
while x:
    print('Infinite loop')
```
Halting Problem

- Function HALT is defined as follows.
Halting Problem

- Function HALT is defined as follows.
 - The first input is algorithm A
Halting Problem

- Function HALT is defined as follows.
 - The first input is algorithm A
 - The second input is string x
Halting Problem

- Function HALT is defined as follows.
 - The first input is algorithm A.
 - The second input is string x.
 - $\text{HALT}(A, x) = 1$ if A halts on input x.
HALTING PROBLEM

• Function HALT is defined as follows.
 • The first input is algorithm A
 • The second input is string \(x \)
 • \(\text{HALT}(A, x) = 1 \) if \(A \) halts on input \(x \)
 • \(\text{HALT}(A, x) = 0 \) if \(A \) enters infinite loop on input \(x \)
APPLICATIONS OF HALTING PROBLEM

- Algorithm for HALT will help to design bug-free soft (and hardware)
APPLICATIONS OF HALTING PROBLEM

• Algorithm for HALT will help to design bug-free soft (and hardware)

• Algorithm for HALT will (eventually) solve many mathematical problems
APPLICATIONS OF HALTING PROBLEM

- Algorithm for HALT will help to design bug-free soft (and hardware)
- Algorithm for HALT will (eventually) solve many mathematical problems
 - Goldbach’s conjecture
APPLICATIONS OF HALTING PROBLEM

- Algorithm for HALT will help to design bug-free soft (and hardware)
- Algorithm for HALT will (eventually) solve many mathematical problems
 - Goldbach’s conjecture
 - Collatz conjecture
APPLICATIONS OF HALTING PROBLEM

- Algorithm for HALT will help to design bug-free soft (and hardware)
- Algorithm for HALT will (eventually) solve many mathematical problems
 - Goldbach’s conjecture
 - Collatz conjecture
 - Twin (cousin/sexy) prime conjecture
Applications of Halting Problem

- Algorithm for HALT will help to design bug-free soft (and hardware)
- Algorithm for HALT will (eventually) solve many mathematical problems
 - Goldbach’s conjecture
 - Collatz conjecture
 - Twin (cousin/sexy) prime conjecture
 - Odd perfect number
APPLICATIONS OF HALTING PROBLEM

• Algorithm for HALT will help to design bug-free soft (and hardware)

• Algorithm for HALT will (eventually) solve many mathematical problems
 • Goldbach’s conjecture
 • Collatz conjecture
 • Twin (cousin/sexy) prime conjecture
 • Odd perfect number
 • …
Clearly, every function can be computed given sufficient time
Except this is not true
HALTING IS UNDECIDABLE
Remarks

• Easy to solve for one input and one algorithm
Remarks

• Easy to solve for one input and one algorithm
• But impossible to solve for all inputs and algorithms
Remarks

• Easy to solve for one input and one algorithm
• But impossible to solve for all inputs and algorithms
• Result holds for all computational models
Remarks

- Easy to solve for one input and one algorithm
- But impossible to solve for all inputs and algorithms
- Result holds for all computational models
- All non-trivial properties of algorithms are undecidable
Compiler
UNDECIDABLE PROBLEM

- Function $A_{\text{diag}}(x)$ is defined as follows
UNDECIDABLE PROBLEM

• Function $A_{\text{diag}}(x)$ is defined as follows

• If the algorithm x on input x outputs 1, then $A_{\text{diag}}(x) = 0$
Undecidable Problem

- Function $A_{\text{diag}}(x)$ is defined as follows

- If the algorithm x on input x outputs 1, then $A_{\text{diag}}(x) = 0$

- If the algorithm x on input x outputs other value or never halts, then $A_{\text{diag}}(x) = 1$
DIAGONALIZATION
PROOF
Reduction from Diag to HALT

• Assume there exists an algorithm for HALT
REDUCTION FROM DIAG TO HALT

• Assume there exists an algorithm for HALT
• Given input x, we check if the algorithm x halts on x
Reduction from Diag to HALT

• Assume there exists an algorithm for HALT

• Given input x, we check if the algorithm x halts on x

• If it doesn’t halt, output 1
Reduction from Diag to HALT

- Assume there exists an algorithm for HALT
- Given input x, we check if the algorithm x halts on x
 - If it doesn’t halt, output 1
 - If it halts and outputs 1, output 0
Reduction from Diag to HALT

- Assume there exists an algorithm for HALT
- Given input x, we check if the algorithm x halts on x
 - If it doesn’t halt, output 1
 - If it halts and outputs 1, output 0
 - If it halts and outputs something else, output 1