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Search Problems



SEARCH PROBLEM

Definition
A search problem is defined by an algorithm C
that takes an instance I and a candidate
solution S, and runs in time polynomial in the
length of I. We say that S is a solution to I iff
C(S, I) = true.



SAT

Example

For SAT, I is a Boolean formula, S is an
assignment of Boolean constants to its
variables. The corresponding algorithm C
checks whether S satisfies all clauses of I.
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• NP stands for “non-deterministic polynomial
time”: one can guess a solution, and then
verify its correctness in polynomial time

• In other words, the class NP contains all
problems whose solutions can be efficiently
verified
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CLASS P

Definition
P is the class of all search problems that can be
solved in polynomial time.



TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a path of
minimum total weight (length) visiting each
node exactly once

length: 6
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TRAVELING SALESMAN PROBLEM
Given a complete weighted graph and a
budget b, find a path of total weight (length)
≤ b visiting each node exactly once

length: 6 ≤ b
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MINIMUM SPANNING TREE
Given a complete weighted graph and a
budget b, connect all vertices by n− 1 edges of
minimum total weight (length)

length: 6
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TSP AND MST

MST
Given n cities, connect
them by (n− 1) roads
of minimal total length

Can be solved
efficiently

TSP
Given n cities, connect
them in a path of
minimal total length

No polynomial
algorithm known!
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LONGEST PATH

Longest path

Input: A weighted graph, two vertices s, t, and a
budget b.

Output: A simple path (containing no repeated
vertices) of total length at least b.
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Shortest path

Find a simple path from
s to t of total length at
most b

Can be solved
efficiently

Longest path

Find a simple path from
s to t of total length at
least b

No polynomial
algorithm known!
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INTEGER LINEAR PROGRAMMING PROBLEM

Integer linear programming

Input: A set of linear inequalities Ax ≤ b.
Output: Integer solution.



Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8
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INTEGER LINEAR PROGRAMMING

LP
Find a real
solution of a system of
linear inequalities

Can be solved
efficiently

ILP
Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!
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LP
Find a real
solution of a system of
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Can be solved
efficiently

ILP
Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!



INDEPENDENT SET PROBLEM

Independent set

Input: A graph and a budget b.
Output: A subset of vertices of size at least b

such that no two of them are adjacent.



Example
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INDEPENDENT SETS IN A TREE

A maximum independent set in a tree can be
found by a simple greedy algorithm: it is safe to
take into a solution all the leaves.



Independent set in
a tree
Find an independent
set of size at least b in
a given tree

Can be solved
efficiently

Independent set in
a graph

Find an independent
set of size at least b in
a given graph

No polynomial
algorithm known!
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NP

It turns out that all these hard problems are in
a sense a single hard problem: a polynomial
time algorithm for any of these problems can
be used to solve all of them in polynomial time!



Class P
Problems whose
solution can be
found efficiently

• MST
• Shortest path
• LP
• IS on trees

Class NP
Problems whose
solution can be verified
efficiently

• TSP
• Longest path
• ILP
• IS on graphs
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The main open problem in Computer Science

Is P equal to NP?

Millenium Prize Problem
Clay Mathematics Institute: $1M prize for
solving the problem
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• If P=NP, then all search problems can be
solved in polynomial time.

• If P̸=NP, then there exist search problems that
cannot be solved in polynomial time.
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Reductions



INFORMALLY

We say that a search problem A is reduced to a
search problem B and write A→ B, if a
polynomial time algorithm for B can be used
(as a black box) to solve A in polynomial time.
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Algorithm for B

Algorithm for A f

instance f(I) of B

no solution to f(I)

no solution to I

solution S to f(I)

h

solution h(S) to I



FORMALLY

Definition
We say that a search problem A is reduced to a
search problem B and write A→ B, if there
exists a polynomial time algorithm f that
converts any instance I of A into an instance f(I)
of B, together with a polynomial time algorithm
h that converts any solution S to f(I) back to a
solution h(S) to A. If there is no solution to f(I),
then there is no solution to I.



GRAPH OF SEARCH PROBLEMS
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NP-COMPLETE PROBLEMS
Definition
A search problem is called NP-complete if all
other search problems reduce to it.

NP
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Do they exist?

It’s not at all immediate that NP-complete
problems even exist. We’ll see later that all
hard problems that we’ve seen in the previous
part are in fact NP-complete!



Two ways of using A→ B:

• if B is easy (can be solved in polynomial
time), then so is A

• if A is hard (cannot be solved in polynomial
time), then so is B



REDUCTIONS COMPOSE

Lemma
If A→ B and B→ C, then A→ C.



PICTORIALLY

NP
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SHOWING NP-COMPLETENESS
Corollary

If A→ B and A is NP-complete, then so is B.
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NP-Completeness of SAT



Goal
Show that every search problem reduces to SAT.

Instead, we show that any problem reduces to
Circuit SAT problem, which, in turn, reduces
to SAT.
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Circuit

x y z 1

∧ ∨

¬

∨

∧

∨ output



Definition
A circuit is a directed acyclic graph of in-degree
at most 2. Nodes of in-degree 0 are called
inputs and are marked by Boolean variables
and constants. Nodes of in-degree 1 and 2 are
called gates: gates of in-degree 1 are labeled
with NOT, gates of in-degree 2 are labeled with
AND or OR. One of the sinks is marked as
output.



Circuit-SAT

Input: A circuit.
Output: An assignment of Boolean values to the

input variables of the circuit that makes the
output true.



SAT is a special case of Circuit-SAT as a SAT
formula can be represented as a circuit:

Example: (x ∨ y ∨ z)(y ∨ x)

x y z

∨¬

∨∨

∧ output



CIRCUIT-SAT→ SAT

To reduce Circuit-SAT to SAT, we need to design
a polynomial time algorithm that for a given
circuit outputs a SAT formula which is
satisfiable, if and only if the circuit is satisfiable



IDEA

• Introduce a Boolean variable for each gate

• For each gate, write down a few clauses that
describe the relationship between this gate
and its direct predecessors



NOT GATES

¬g

h

(h ∨ g)(h ∨ g)



AND GATES

∧g

h1 h2

(h1 ∨ g)(h2 ∨ g)(h1 ∨ h2 ∨ g)



OR GATES

∨g

h1 h2

(h1 ∨ g)(h2 ∨ g)(h1 ∨ h2 ∨ g)



OUTPUT GATE

g output (g)



• The resulting SAT formula is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of g is
equal to the value of the gate labeled with
g in the circuit

• Therefore, the SAT formula and the circuit
are equisatisfiable

• The reduction takes polynomial time
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Goal
Reduce every search problem to Circuit-SAT.

• Let A be a search problem
• We know that there exists an algorithm C
that takes an instance I of A and a
candidate solution S and checks whether S
is a solution for I in time polynomial in |I|

• In particular, |S| is polynomial in |I|
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TURN AN ALGORITHM INTO A CIRCUIT

• Note that a computer is in fact a circuit
implemented on a chip

• Each step of the algorithm C(I, S) is
performed by this computer’s circuit

• This gives a circuit of size polynomial in |I|
that has input bits for I and S and outputs
whether S is a solution for I (a separate
circuit for each input length)
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REDUCTION

To solve an instance I of the problem A:

• take a circuit corresponding to C(I, ·)

• the inputs to this circuit encode candidate
solutions

• use a Circuit-SAT algorithm for this circuit
to find a solution (if exists)
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