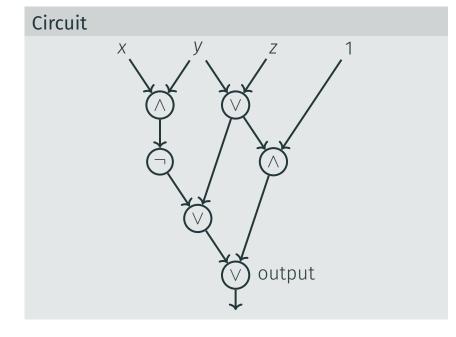
GEMS OF TCS

CIRCUIT COMPLEXITY

Sasha Golovnev October 23, 2023



Definition

A circuit is a directed acyclic graph of in-degree at most 2. Nodes of in-degree 0 are called inputs and are marked by Boolean variables and constants. Nodes of in-degree 1 and 2 are called gates: gates of in-degree 1 are labeled with NOT, gates of in-degree 2 are labeled with AND or OR. One of the sinks is marked as output.

BOOLEAN CIRCUITS

$$f: \{0,1\}^n \to \{0,1\}$$

$$g_1 = \neg X_1$$

$$g_2 = X_2 \land X_3$$

$$g_3 = g_1 \lor g_2$$

$$g_4 = g_2 \lor 1$$

$$g_5 = g_3 \land g_4$$

BOOLEAN CIRCUITS

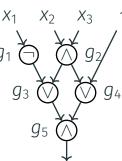
 $f: \{0,1\}^n \to \{0,1\}$

 $q_1 = \neg X_1$ X₁ X₂ X₃ 1 $g_2 = X_2 \wedge X_3$ g_1 g_2 $g_3 = g_1 \vee g_2$ **g**3 g_4 $q_4 = q_2 \vee 1$ g_5 $q_5 = q_3 \wedge q_4$

BOOLEAN CIRCUITS

 $f: \{0,1\}^n \to \{0,1\}$

 $g_{1} = \neg x_{1} \qquad x$ $g_{2} = x_{2} \land x_{3} \qquad g_{1}$ $g_{3} = g_{1} \lor g_{2}$ $g_{4} = g_{2} \lor 1$ $g_{5} = g_{3} \land g_{4}$



Inputs: 1 $X_1, \ldots, X_n, 0, 1$ Gates: AND, OR, NOT Fan-out: unbounded Depth: unbounded

EXPONENTIAL BOUNDS

Lower Bound [Sha1949]

Almost all functions of *n* variables have circuit size

 $\geq 2^n/n$

EXPONENTIAL BOUNDS

Lower Bound [Sha1949]

Almost all functions of *n* variables have circuit size

 $\geq 2^n/n$

Upper Bound [Lup1958]

Any function can be computed by a circuit of size

 $\leq 2^n/n$

Most functions have exponential circuit complexity

Most functions have exponential circuit complexity

$\mathsf{P} \neq \mathsf{NP}$ We want to prove superpolynomial lower bounds

Most functions have exponential circuit complexity

 $P \neq NP$ We want to prove superpolynomial lower bounds (for a function from NP)

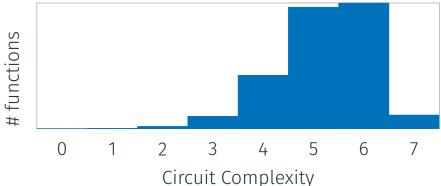
Most functions have exponential circuit complexity

 $\mathsf{P} \neq \mathsf{N}\mathsf{P}$

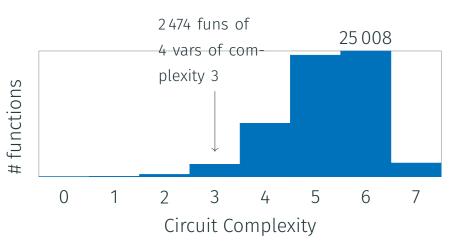
We want to prove superpolynomial lower bounds (for a function from NP)

We can prove only $\approx 5n$ lower bounds

CIRCUIT COMPLEXITY: n = 4

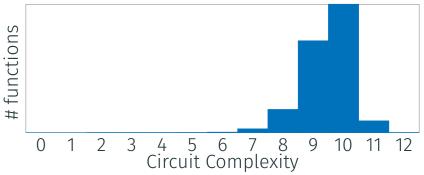


CIRCUIT COMPLEXITY: n = 4

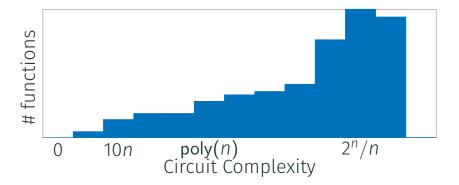


CIRCUIT COMPLEXITY: n = 5

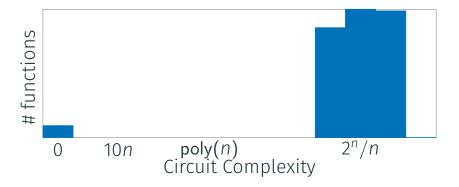
2 123 645 248



CIRCUIT COMPLEXITY: GENERAL *n*



CIRCUIT COMPLEXITY: GENERAL *n*



Theorem

For any $T \le 2^n/n$, there is a function $f: \{0, 1\}^n \to \{0, 1\}$ s.t.

```
Size(f) = T \pm n.
```

Theorem

For any $T \le 2^n/n$, there is a function $f: \{0, 1\}^n \to \{0, 1\}$ s.t.

$$Size(f) = T \pm n$$
 .

$$g_0(x) = 0, \forall x \in \{0,1\}^n$$

Theorem

For any $T \le 2^n/n$, there is a function $f: \{0,1\}^n \to \{0,1\}$ s.t.

$$Size(f) = T \pm n$$
 .

$$g_0(x) = 0, \forall x \in \{0, 1\}^n$$

Size $(g_0) = 1$

Theorem

For any $T \le 2^n/n$, there is a function $f: \{0,1\}^n \to \{0,1\}$ s.t.

$$Size(f) = T \pm n$$
 .

 $g_0(x) = 0, \forall x \in \{0, 1\}^n$ Size $(h) \ge 2^n/n$ Size $(g_0) = 1$

Theorem

For any $T \le 2^n/n$, there is a function $f: \{0,1\}^n \to \{0,1\}$ s.t.

$$Size(f) = T \pm n$$
.

$$g_0(x) = 0, \forall x \in \{0, 1\}^n$$
 Size $(h) \ge 2^n/n$
Size $(g_0) = 1$ $h: \{0, 1\}^n \to \{0, 1\}$

Theorem

For any $T \le 2^n/n$, there is a function $f: \{0,1\}^n \to \{0,1\}$ s.t.

$$Size(f) = T \pm n$$
 .

 $g_0(x) = 0, \forall x \in \{0, 1\}^n$ Size $(g_0) = 1$ Size(h) $\geq 2^n/n$ h: $\{0,1\}^n \rightarrow \{0,1\}$ $y_1, \dots, y_k \in \{0,1\}^n$ $h(y_i) = 1$

 $g_0(x) = 1$ never

 $g_0(x) = 1$ never

 $g_1(x) = 1$ if $x = y_1$

 $g_0(x) = 1$ never $g_1(x) = 1$ if $x = y_1$ $g_2(x) = 1$ if $x \in \{y_1, y_2\}$

 $g_0(x) = 1$ never $g_1(x) = 1$ if $x = y_1$ $g_2(x) = 1$ if $x \in \{y_1, y_2\}$ $g_3(x) = 1$ if $x \in \{y_1, y_2, y_3\}$

 $q_0(x) = 1$ never $q_1(x) = 1$ if $x = y_1$ $q_2(x) = 1$ if $x \in \{y_1, y_2\}$ $q_3(x) = 1$ if $x \in \{y_1, y_2, y_3\}$ $q_k(x) = 1$ if $x \in \{y_1, \dots, y_k\}$

 $q_0(x) = 1$ never $q_1(x) = 1$ if $x = y_1$ $q_2(x) = 1$ if $x \in \{y_1, y_2\}$ $q_3(x) = 1$ if $x \in \{y_1, y_2, y_3\}$ $h = q_k(x) = 1$ if $x \in \{y_1, \dots, y_k\}$

 $g_0(x) = 1$ never $q_{i+1}(x) = q_i(x) \lor (x = y_{i+1})$ $q_1(x) = 1$ if $x = y_1$ $q_2(x) = 1$ if $x \in \{y_1, y_2\}$ $q_3(x) = 1$ if $x \in \{y_1, y_2, y_3\}$

 $h = g_k(x) = 1$ if $x \in \{y_1, \dots, y_k\}$

 $g_0(x) = 1$ never $g_1(x) = 1$ if $x = y_1$ $g_2(x) = 1$ if $x \in \{y_1, y_2\}$ $g_3(x) = 1$ if $x \in \{y_1, y_2, y_3\}$...

$$g_{i+1}(x) = g_i(x) \lor (x = y_{i+1})$$

 $g_{i+1}(x) = g_i(x) \lor (x = 1011)$

 $h = g_k(x) = 1$ if $x \in \{y_1, \dots, y_k\}$

 $g_0(x) = 1$ never $g_1(x) = 1$ if $x = y_1$ $g_2(x) = 1$ if $x \in \{y_1, y_2\}$ $g_3(x) = 1$ if $x \in \{y_1, y_2, y_3\}$

$$g_{i+1}(x) = g_i(x) \lor (x = y_{i+1})$$

$$g_{i+1}(x) = g_i(x) \lor (x = 1011)$$

$$g_{i+1}(x) = g_i(x) \lor (x_1 \land \bar{x_2} \land x_3 \land x_4)$$

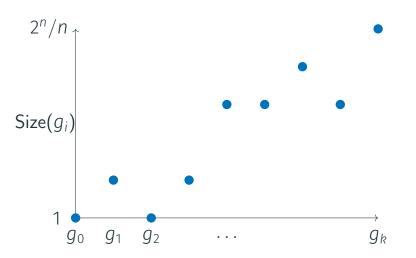
$$h = g_k(x) = 1$$
 if $x \in \{y_1, \dots, y_k\}$

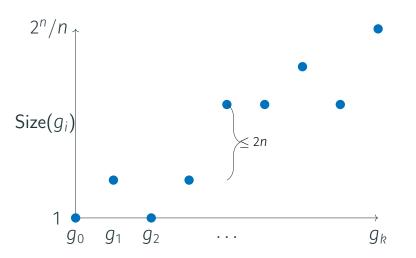
. . .

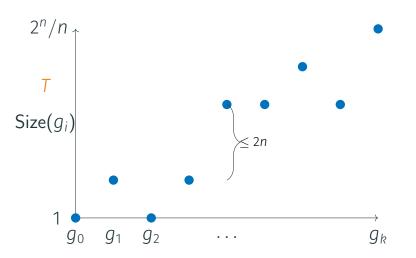
 $g_0(x) = 1$ never $g_1(x) = 1$ if $x = y_1$ $g_2(x) = 1$ if $x \in \{y_1, y_2\}$ $g_3(x) = 1$ if $x \in \{y_1, y_2, y_3\}$

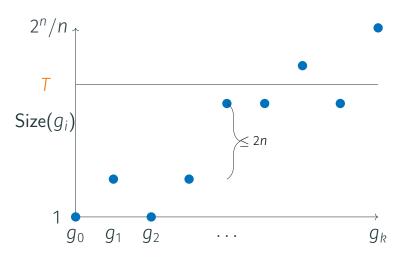
 $g_{i+1}(x) = g_i(x) \lor (x = y_{i+1})$ $g_{i+1}(x) = g_i(x) \lor (x = 1011)$ $g_{i+1}(x) = g_i(x) \lor (x_1 \land \bar{x_2} \land x_3 \land x_4)$ Size(g_{i+1}) \leq Size(g_i) + 2n

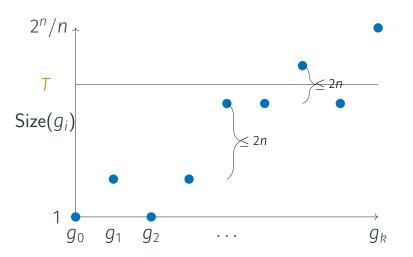
 $h = g_k(x) = 1$ if $x \in \{y_1, \dots, y_k\}$









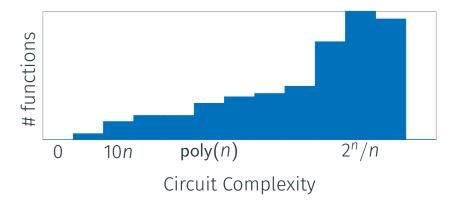


Theorem

For any $T \le 2^n/n$, there is a function $f: \{0,1\}^n \to \{0,1\}$ s.t.

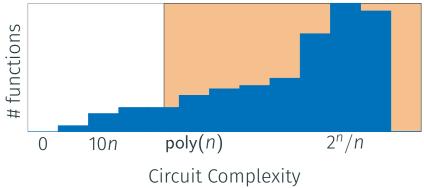
 $Size(f) = T \pm n$.

GOAL



GOAL

Find a hard function



CIRCUIT COMPLEXITY

 $\cdot\,$ Goal: Find a hard function

CIRCUIT COMPLEXITY

 \cdot Goal: Find a hard function

 \cdot Lower bounds: what functions are hard

CIRCUIT COMPLEXITY

 \cdot Goal: Find a hard function

 \cdot Lower bounds: what functions are hard

 \cdot Upper bounds: what functions are easy

Upper Bound [Lup1958]

Any function can be computed by a circuit of size

$$\leq 10 \cdot 2^n - 4$$

Upper Bound [Lup1958]

Any function can be computed by a circuit of size

$$\leq 10 \cdot 2^{n} - 4$$

$$f(x_1, \dots, x_n) = \begin{cases} f(1, x_2, \dots, x_n), & \text{if } x_1 = 1\\ f(0, x_2, \dots, x_n), & \text{if } x_1 = 0 \end{cases}$$

Upper Bound [Lup1958]

Any function can be computed by a circuit of size

$$\leq 10 \cdot 2^{n} - 4$$

$$f(x_1,\ldots,x_n) = \begin{cases} f(1,x_2,\ldots,x_n), & \text{if } x_1 = 1\\ f(0,x_2,\ldots,x_n), & \text{if } x_1 = 0 \end{cases}$$

 $= (x_1 \wedge f(1, x_2, \ldots, x_n)) \vee (\bar{x_1} \wedge f(0, x_2, \ldots, x_n))$

Upper Bound [Lup1958]

Any function can be computed by a circuit of size

 $\leq 10 \cdot 2^n - 4$

$$f(x_1,\ldots,x_n) = \begin{cases} f(1,x_2,\ldots,x_n), & \text{if } x_1 = 1\\ f(0,x_2,\ldots,x_n), & \text{if } x_1 = 0 \end{cases}$$

 $= (x_1 \wedge f(1, x_2, ..., x_n)) \vee (\bar{x_1} \wedge f(0, x_2, ..., x_n))$ = $(x_1 \wedge g_1(x_2, ..., x_n)) \vee (\bar{x_1} \wedge g_0(x_2, ..., x_n))$

Upper Bound [Lup1958]

Any function can be computed by a circuit of size

 $\leq 10 \cdot 2^n - 4$

$$f(x_1,\ldots,x_n) = \begin{cases} f(1,x_2,\ldots,x_n), & \text{if } x_1 = 1\\ f(0,x_2,\ldots,x_n), & \text{if } x_1 = 0 \end{cases}$$

$$= (x_1 \land f(1, x_2, ..., x_n)) \lor (\bar{x_1} \land f(0, x_2, ..., x_n))$$

= $(x_1 \land g_1(x_2, ..., x_n)) \lor (\bar{x_1} \land g_0(x_2, ..., x_n))$
Size $(n) \le 4 + 2$ Size $(n - 1) = O(2^n)$

CIRCUIT LOWER BOUND. PROOF

Lower Bound [Sha1949]

Almost all functions of *n* variables have circuit size

 $\geq 2^{n}/(10n)$