GEMS OF TCS

APPROXIMATION ALGORITHMS

Sasha Golovnev
August 28, 2023
APPROXIMATION ALGORITHMS

- Optimal exact solution OPT (ex: shortest TSP cycle)
Approximation Algorithms

- Optimal exact solution \textbf{OPT} (ex: shortest TSP cycle)
- \textbf{OPT} is too hard to find (ex: \textbf{NP}-hard)
Approximation Algorithms

- Optimal exact solution OPT (ex: shortest TSP cycle)
- OPT is too hard to find (ex: NP-hard)
- A k-approximation algorithm finds a solution $\leq k \times \text{OPT}$
APPROXIMATION ALGORITHMS

- Optimal exact solution OPT (ex: shortest TSP cycle)
- OPT is too hard to find (ex: NP-hard)
- A k-approximation algorithm finds a solution $\leq k \times \text{OPT}$
- Possibly efficiently! (ex: poly time)
Approximation Algorithms

- Optimal exact solution OPT (ex: shortest TSP cycle)
- OPT is too hard to find (ex: NP-hard)
- A k-approximation algorithm finds a solution $\leq k \times \text{OPT}$
- Possibly efficiently! (ex: poly time)
- When do we use approximation algorithms?
Matchings

- A Matching in a graph is a set of edges without common vertices
MATCHINGS

- A **Matching** in a graph is a set of edges without common vertices

- A **Maximal Matching** is a matching which cannot be extended to a larger matching
Matchings

- A *Matching* in a graph is a set of edges without common vertices.

- A *Maximal Matching* is a matching which cannot be extended to a larger matching.

- A *Maximum Matching* is a matching of the largest size.
Matchings. Examples
Matchings. Examples
MATCHINGS. EXAMPLES
Job Assignment

<table>
<thead>
<tr>
<th></th>
<th>Alice</th>
<th>Ben</th>
<th>Chris</th>
<th>Diana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Programmer</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Librarian</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
JOB ASSIGNMENT

adm

prog

libr

prof

A

B

C

D
JOB ASSIGNMENT

adm - A
prog - B
libr - C
prof - D
JOB ASSIGNMENT

adm - A
prog - B
libr - C
prof - D
Room Assignment

<table>
<thead>
<tr>
<th></th>
<th>R# 1</th>
<th>R# 2</th>
<th>R# 3</th>
<th>R# 4</th>
<th>R# 5</th>
<th>R# 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaron</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bianca</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dana</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Emma</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Francis</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ROOM ASSIGNMENT

A 1
B 2
C 3
D 4
E 5
F 6
Algorithms

<table>
<thead>
<tr>
<th>Maximal Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be found in polynomial time by a greedy algorithm</td>
</tr>
<tr>
<td>Algorithms</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Maximal Matching</td>
</tr>
<tr>
<td>Can be found in polynomial time by a greedy algorithm</td>
</tr>
<tr>
<td>Maximum Matching</td>
</tr>
<tr>
<td>Can be found in polynomial time by the blossom algorithm</td>
</tr>
<tr>
<td>Algorithm</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Maximal Matching</td>
</tr>
<tr>
<td>Maximum Matching</td>
</tr>
<tr>
<td>Minimum Weight Perfect Matching</td>
</tr>
</tbody>
</table>
ROOM ASSIGNMENT

A -> 1
B -> 2
C -> 3
D -> 4
E -> 5
F -> 6
Vertex Cover
Vertex Covers

- A **Vertex Cover** of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.
Vertex Covers

- A **Vertex Cover** of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.

- A **Minimal Vertex Cover** is a vertex cover which does not contain other vertex covers.
Vertex Covers

- A *Vertex Cover* of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.

- A *Minimal Vertex Cover* is a vertex cover which does not contain other vertex covers.

- A *Minimum Vertex Cover* is a vertex cover of the smallest size.
VERTEX COVERS: EXAMPLES
ANTIVIRUS SYSTEM
Algorithms

<table>
<thead>
<tr>
<th>Minimal Vertex Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be found in polynomial time by a greedy algorithm</td>
</tr>
</tbody>
</table>
Algorithms

<table>
<thead>
<tr>
<th>Minimal Vertex Cover</th>
<th>Can be found in polynomial time by a greedy algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Vertex Cover</td>
<td>Is \textbf{NP}-hard. We only know exponential-time algorithms</td>
</tr>
</tbody>
</table>
APPROXIMATION ALGORITHM

- $M \leftarrow$ maximal matching in G
APPROXIMATION ALGORITHM

• $M \leftarrow$ maximal matching in G

• return all vertices in M
• $C \leftarrow \emptyset$
EQUIVALENT ALGORITHM

• $C \leftarrow \emptyset$

• while $E \neq \emptyset$
Equivalent Algorithm

• $C \leftarrow \emptyset$

• while $E \neq \emptyset$
 • $\{u, v\} \leftarrow$ any edge from E
Equivalent Algorithm

- $C \leftarrow \emptyset$

- while $E \neq \emptyset$
 - $\{u, v\} \leftarrow$ any edge from E
 - add u, v to C
Equivalent Algorithm

- $C \leftarrow \emptyset$

- while $E \neq \emptyset$
 - $\{u, v\} \leftarrow$ any edge from E
 - add u, v to C
 - delete from E all edges incident to u or v
- return C
Proof

Lemma

This algorithm runs in polynomial time and is 2-approximate: it returns a vertex cover that is at most twice larger then a minimum vertex cover.
Final Remarks

- The analysis is tight: there are graphs with matchings twice larger than vertex covers
Final Remarks

• The analysis is tight: there are graphs with matchings twice larger than vertex covers

• No 1.99-approximation algorithm is known
Break

Matchings:

Vertex covers:
Traveling Salesman
Approximation

- If $P \neq NP$, then there is no k-approximation algorithm for the general version of TSP for any constant k.
Approximation

- If $\mathbf{P} \neq \mathbf{NP}$, then there is no k-approximation algorithm for the general version of TSP for any constant k

- **Euclidean TSP**: $w(u, v) = w(v, u)$ and $w(u, v) \leq w(u, z) + w(z, v)$
APPROXIMATION

• If $P \neq NP$, then there is no k-approximation algorithm for the general version of TSP for any constant k

• **Euclidean TSP**: $w(u, v) = w(v, u)$ and $w(u, v) \leq w(u, z) + w(z, v)$

• We will design a 2-approximation algorithm: it quickly finds a cycle that is at most twice longer than an optimal one
DEFINITION

• A tree is a connected graph without cycles
Definition

• A tree is a connected graph without cycles
• A tree is a connected graph on n vertices with $n - 1$ edges
Definition

- A **tree** is a connected graph without cycles.
- A **tree** is a connected graph on n vertices with $n - 1$ edges.
- A **Spanning Tree** of a graph G is a subgraph of G that (i) is a tree and (ii) contains all vertices of G.
Definition

- A **tree** is a connected graph without cycles
- A **tree** is a connected graph on n vertices with $n - 1$ edges
- A **Spanning Tree** of a graph G is a subgraph of G that (i) is a tree and (ii) contains all vertices of G
- A **Minimum Spanning Tree** of a weighted graph G is a spanning tree of the smallest weight
Minimum Spanning Tree: Examples

A — B (3) — G (1) — F (3) — E (4) — D (5)
A — B (3) — C (3) — G (2) — D (5)
A — B (3) — C (3) — E (7) — G (2) — D (5)
Minimum Spanning Tree: Examples
Lemma

Let G be an undirected graph with non-negative edge weights. Then $\text{MST}(G) \leq \text{TSP}(G)$.

Minimum Spanning Trees
Minimum Spanning Trees

Lemma

Let G be an undirected graph with non-negative edge weights. Then $\text{MST}(G) \leq \text{TSP}(G)$.

Proof

By removing any edge from an optimum TSP cycle one gets a spanning tree of G.
An **Eulerian cycle (or path)** visits every edge exactly once
Eulerian Cycle

An Eulerian cycle (or path) visits every edge exactly once

Criteria

A connected undirected graph contains an Eulerian cycle, if and only if the degree of every node is even
EXAMPLE

Non-Eulerian graph
EXAMPLE

Non-Eulerian graph

Eulerian graph
ALGORITHM

• $T \leftarrow$ minimum spanning tree of G
Algorithm

- $T \leftarrow$ minimum spanning tree of G
- $D \leftarrow T$ with each edge doubled
Algorithm

- \(T \leftarrow \text{minimum spanning tree of } G \)
- \(D \leftarrow T \) with each edge doubled
- find an Eulerian cycle \(C \) in \(D \)
ALGORITHM

- $T \leftarrow$ minimum spanning tree of G
- $D \leftarrow T$ with each edge doubled
- find an Eulerian cycle C in D
- return a cycle that visits the nodes in the order of their first appearance in C
Approximation Guarantee

<table>
<thead>
<tr>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>The algorithm is 2-approximate.</td>
</tr>
</tbody>
</table>
Approximation Guarantee

<table>
<thead>
<tr>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>The algorithm is 2-approximate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The total length of the MST $T \leq \text{OPT}$</td>
</tr>
</tbody>
</table>
Approximation Guarantee

Lemma

The algorithm is 2-approximate.

Proof

- The total length of the MST $T \leq \text{OPT}$
- We start with Eulerian cycle of length $2|T|$
Approximation Guarantee

Lemma

The algorithm is 2-approximate.

Proof

- The total length of the MST $T \leq \text{OPT}$
- We start with Eulerian cycle of length $2|T|$
- Shortcuts can only decrease the total length