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RANDOMIZED ALGORITHMS

• Randomized algorithm may be faster and
simpler

• For some tasks randomness is necessary

• We’ll use randomized algorithms in virtually all
following topics

• Randomized algorithms make mistakes (with
small probability)
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REVIEW OF PROBABILITY THEORY

• Sample Space Ω.

Ω = {1, 2, 3, 4, 5, 6}; Ω = {HH,HT, TH, TT}

• Event A ⊆ Ω. A = {2, 4, 6}; A = {TT, TH}

• Probability measure: ∀A,Pr(A) ∈ [0, 1]
• Pr(Ω) = 1
• A1,A2, . . . are disjoint: Pr[∪iAi] =

∑
i Pr[Ai]

• A1 = {HH}, A2 = {HT},
Pr[A1 ∪ A2] = Pr[A1] + Pr[A2]
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INDEPENDENT EVENTS
• A1 and A2 are independent iff
Pr[A1,A2] = Pr[A1] · Pr[A2]

• A1 = {1st die is 6}, A2 = {2nd die is 6}

Pr[A1] = 1/6; Pr[A2] = 1/6; Pr[A1,A2] = 1/36

• A1 = {1st die is 1}, A2 = {sum of two dice is 2}

Pr[A1] = 1/6; Pr[A2] = 1/36; Pr[A1,A2] = 1/36
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RANDOM VARIABLE
• Result of experiment is often not event but
number

• Random variable X : Ω → R
• Toss three coins, X = number of heads
• Throw two dice:
Y = sum of numbers, Z = max of numbers

• Expected value E[X] =
∑

i Pr[xi] · xi
• Throw a die, X = the number you’re getting

E[X] = 1
6 · 1+ 1

6 · 2+ . . .+
1
6 · 6 = 3.5
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CLOUD SYNC

• Synchronize local files to the cloud

• Has file been changed? File length: n bits

• Algorithm: send n bits

• Can send n− 1 bits?
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1 1 1 1 10 0 0 0 0

1 1 1 1 10 0 0 00

No algorithm can solve the problem by sending
n− 1 bits

Randomized algorithm can solve the problem
by sending ≈ log n bits!
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ANALYSIS

• If a = b, then for every p, a = b mod p. We
always output EQ!

• If a ̸= b, how often do we output EQ?

• a− b = 0 mod p.
2n ≥ a− b = p1 · p2 · · ·pk ≥ 2k

• Prime Number Theorem: there are ≈ N/ logN
prime numbers in the interval {2, 3, . . . ,N}

• With probability ≈ 1− 1
100n the output is correct
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LINEARITY OF EXPECTATION
E[X+ Y]?

E[X+ Y] =
∑
i,j

Pr[X = xi, Y = yj] · (xi + yj)

=
∑
i

xi
∑
j

Pr[X = xi, Y = yj]

+
∑
j

yj
∑
i

Pr[X = xi, Y = yj]

=
∑
i

xi Pr[X = xi] +
∑
j

yj Pr[Y = yj]

= E[X] + E[Y]
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LINEARITY OF EXPECTATION

• One die: E[X] = 3.5

• Five dice? E[X1 + X2 + X3 + X4 + X5]?

• By linearity of expectation:

E[X1 + X2 + X3 + X4 + X5]
= E[X1] + E[X2] + E[X3] + E[X4] + E[X5]
= 5 · 3.5 = 17.5
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Maximum Cut (Max-CUT)



MAXIMUM CUT

• Undirected graph G, vertices V, edges E

• Bipartition of V that maximizes the number of
edges crossing the partition

• Bipartition: S ⊆ V, S ⊆ V

• Cut δ(S) = {(u, v) ∈ E : u ∈ S, v ∈ S}

• Max-CUT: maxS⊆V δ(S)

• NP-hard to solve
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ANALYSIS
• Xu,v = 1 if (u, v) is cut, Xu,v = 0 otherwise

• Xu,v = 1 with probability 1/2
• E[Xu,v] = 1/2
• Number of cut edges∑
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EXAMPLE

• Alice and Bob have (unusual) dice

• Numbers on Alice’s die are 2, 2, 2, 2, 3, 3

• Numbers on Bob’s die are 1, 1, 1, 1, 6, 6

• Alice and Bob throw their dice; the one with
the larger number on the die wins

• Whose die has larger expected number?

• Who wins with higher probability?



MARKOV’S INEQUALITY
Theorem
If X is non-negative random variable*, then

∀a, Pr[X ≥ a] ≤ E[X]
a .

Examples:
Pr[X ≥ 2E[X]] ≤ 1

2 .

Pr[X ≥ 5E[X]] ≤ 1
5 .
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LOTTERY BUDGET
Problem
A lottery ticket costs 10 dollars. A 40% of a lottery budget
goes to prizes. Show that the chances to win 500 dollars
or more are less than 1%

• Assume the contrary: the probability to win 500
dollars or more is at least 0.01

• Denote the number of tickets sold by n

• Then the budget of the lottery is 10n dollars

• 10n× 0.4 = 4n dollars are spent on the prizes

• By our assumption at least n
100 tickets win at

least 500 dollars
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100 × 500 = 5n dollars

• This exceeds the total prize budget of 4n!
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E[X] ≥ a× Pr[X ≥ a]

Suppose X takes values a1,a2,a3,a4 with probabilities
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the gray region

a× Pr[X ≥ a] is the
area of the red
region

The gray region is
larger: the
inequality follows
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APPROXIMATION GUARANTEE

• E[#cut edges] = |E|/2 =⇒
E[#uncut edges] = |E|/2

• Pr[#uncut edges ≥ |E|
2 (1+ ε)] ≤ 1

1+ε

• Pr[#cut edges ≤ |E|
2 (1− ε)] ≤ 1

1+ε ≤ 1− ε/2

• With probability at least ε/2, we have
2
1−ε-approximation

• Ex. ε = 1/100: with probability at least 1/200,
we have 2.03-approximation
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PROBABILITY AMPLIFICATION

• Pick independent uniform subsets
S1, . . . , Sk ⊆ V

• Output the subset with maximum cut δ(Si)

• Pr[max δ(Si) ≤ |E|
2 (1−ε)]= Pr[all δ(Si) ≤ |E|
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≤ (1− ε/2)k ≤ e−εk/2 ≤ 1
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• We can go from expectation to probability via
Markov’s inequality

• We can amplify probability of success by
independent repetitions
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