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RANDOMIZED ALGORITHMS

- Randomized algorithm may be faster and
simpler

- For some tasks randomness is necessary

- We'll use randomized algorithms in virtually all
following topics

- Randomized algorithms make mistakes (with
small probability)
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REVIEW OF PROBABILITY THEORY

- Sample Space 2.
Q={1,2,3,4,56}; Q={HH,HT,TH TT}

CEventAC Q. A={2,4,6}; A={TT,TH}

- Probability measure: VA, Pr(A) € [0,1]

- Pr(Q2) =1

© AL Ay, . are disjoint: Pr[UiAj] = Y2 PriAf]
©Ar={HH}, Ay = {HT},

Pr[A1 U Ay] = Pr[Aj] + Pr[A;]
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- Ay and A; are independent iff
PI’[A1,A2] = PI’[A1] . Pr[Az]
- Ay ={lIstdieis 6}, A, = {2nd die is 6}

Pr[A[] =1/6; Pr[A)] =1/6; Pr[A,A)] =1/36

- Ay = {1Istdie is 1}, A, = {sum of two dice is 2}

PriA] = 1/6; Pr[A,] =1/36; PrlA;,A)] = 1/36
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RANDOM VARIABLE

- Result of experiment is often not event but
number

- Random variable X: Q - R

- Toss three coins, X = number of heads

- Throw two dice:

Y = sum of numbers, Z = max of numbers
- Expected value E[X] = >_; Pr[x] - X;

- Throw a die, X = the number you're getting

1 1 1
B =g 14z 24 ...+ ¢ 6=35



Cloud Sync



CLOUD SYNC

- Synchronize local files to the cloud



CLOUD SYNC

- Synchronize local files to the cloud

- Has file been changed? File length: n bits



CLOUD SYNC

- Synchronize local files to the cloud
- Has file been changed? File length: n bits

- Algorithm: send n bits



CLOUD SYNC

- Synchronize local files to the cloud
- Has file been changed? File length: n bits
- Algorithm: send n bits

- Can send n — 1 bits?
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CLOUD SYNC. LOWER BOUND

No algorithm can solve the problem by sending
n —1bits

Randomized algorithm can solve the problem
by sending = log n bits!
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RANDOMIZED ALGORITHM
local file

1T 0 o0 1 1 0 1 1 0 O

ae{0,...,2" =1}
Pick random
a mod p prime p €
FO iff {2,3,...,100n?log n}
a=>b modp
be{0,...,2" -1}

T o0 0 1T 1T 1T 1 1 0 O

cloud file
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ANALYSIS

- Ifa = b, then for every p,a=>b mod p. We
always output EQ!

- If a # b, how often do we output EQ?

-a—b=0 modp.
2">a—-b=pi-py-pp> 2"

- Prime Number Theorem: there are ~ N/ log N
prime numbers in the interval {2,3,...,N}

- With probability ~ 1— ﬁ the output is correct
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LINEARITY OF EXPECTATION
E[X + Y]?
EX+Y] = ZPr[xzx,-,vzyj] (i)

—Xyéjmw—mY yjl

+§:%§:mw_&M'yJ

ZE:MMV:WJ+§:MWW=MJ
i j

= E[X] + E[Y]
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LINEARITY OF EXPECTATION

- One die: E[X] =3.5

- Five dice? E[X7 + Xo + X5 + Xs + X5]?
- By linearity of expectation:

E[Xy 4+ Xo + X5 4+ X4 + X5]

= E[Xi] + E[X3] + E[X5] + E[Xs] + E[X5]
=5-35=175
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MAXIMUM CuUT

- Undirected graph G, vertices V, edges E

- Bipartition of V that maximizes the number of
edges crossing the partition

- Bipartition: SCV,SCV
- Cut§(S)={(u,v) €E:uecS,veS}
- Max-CUT: maxsg/é(S)

- NP-hard to solve exactly
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RANDOMIZED APPROXIMATION

- Qutput a random subset S C V

- In other words, add each vertex vin S
independently with probability 1/2

- Each edge (u,v) is cut with probability 1/2
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ANALYSIS

« Xuy = Tif (u,v) is cut, X, , = 0 otherwise
* Xuy = Twith probability 1/2

° E[Xu7v] — 1/2

- Number of cut edges

- Expected number of cut edges

E[ Z Xu v] = Z E[Xu,v] - |E|/2

(u,v)eE (u,v)eE
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2-APPROXIMATION

- Max-CUT: OPT < |E|
- Our algorithm: E[6(S)] > |E|/2
- E[6(S)] > OPT /2

- Can we have algorithm that always outputs
5(S) > OPT /27



EXAMPLE

- Alice and Bob have (unusual) dice
- Numbers on Alice’'s dieare 2,2, 2,2, 3, 3
- Numbers on Bob'sdieare1,1,1,1,6, 6

- Alice and Bob throw their dice; the one with
the larger number on the die wins

- Whose die has larger expected number?

- Who wins with higher probability?
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MARKOV'S INEQUALITY
Theorem

If X Is non-negative random variable*, then

Va, Pr[X>da] < [X]

Examples:
PrX > 2E[X]] < - .

PrX > SE[X]] < %
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LOTTERY BUDGET

Problem

A lottery ticket costs 10 dollars. A 40% of a lottery budget
goes to prizes. Show that the chances to win 500 dollars
or more are less than 1%

- Assume the contrary: the probability to win 500
dollars or more is at least 0.01

- Denote the number of tickets sold by n
- Then the budget of the lottery is 10n dollars
- 10n x 0.4 = 4n dollars are spent on the prizes

- By our assumption at least 75 tickets win at
least 500 dollars
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LOTTERY BUDGET

Problem

A lottery ticket costs 10 dollars. A 40% of a lottery budget
goes to prizes. Show that the chances to win 500 dollars
or more are less than 1%

- In total these tickets win 55 % 500 = 5n dollars

- This exceeds the total prize budget of 4n!

- Contradiction!
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E[X] > a x Pr[X > q]
Suppose X takes values aq, a,, as, a, with probabilities
P1, P2, P3, P4

AN
as —
ofb— i
a : : :
a, N
a, — . .
—t ; —
0 P P2 Ps Py 1
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GEOMETRIC PROOF

E[X] > a x Pr[X > q]
Suppose X takes values aq, a,, as, a, with probabilities
p1>p27p3ap4

E[X] is the area of
the gray region

a x Pr[X > a] is the
area of the red
region

The gray region is
larger: the
inequality follows
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APPROXIMATION GUARANTEE

- E[#£cut edges] = |E|/2 =

E[#uncut edges] = |E|/2

+ Pr[#uncut edges > (1 +¢)] < -1

- Pr[#cut edges < @(1 —e) <7z <1-¢/)2
we

- With probability at least /2,
E—approxma’uon

have

- Ex. e = 1/100: with probability at least 1/200,
we have 2.03-approximation
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PROBABILITY AMPLIFICATION

- Pick independent uniform subsets
S1,...,S5, CV

- Output the subset with maximum cut §(S)

- Primaxd(S)) < E(1-e)]= Prlall §(S;) < E(1-¢)]

< (1-2/2)" < e M2 < o for k = 2150

- We have - -approximation with probability

1
- 1010n
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SUMMARY

- Randomized algorithm may be faster and
simpler

- For some tasks randomness is necessary

- We can go from expectation to probability via
Markov's inequality

- We can amplify probability of success by
iIndependent repetitions



