GEMS OF TCS

STREAMING ALGORITHMS

Sasha Golovnev
February 4, 2021
STREAMING ALGORITHMS

• Massively long stream of data
STREAMING ALGORITHMS

- Massively long stream of data
 Instagram, search queries, network packets
STREAMING ALGORITHMS

• Massively long stream of data
 Instagram, search queries, network packets
 \(x_1, x_2, x_3, \ldots, x_n\)
STREAMING ALGORITHMS

• Massively long stream of data
 Instagram, search queries, network packets
 $x_1, x_2, x_3, \ldots, x_n$

• Data has grown: we can’t afford even stoing it
STREAMING ALGORITHMS

- Massively long stream of data
 Instagram, search queries, network packets
 \(x_1, x_2, x_3, \ldots, x_n \)
- Data has grown: we can’t afford even stoing it
- \(n \) inputs, space \(\sqrt{n}; \log^{10} n; \log n \)
Streaming Algorithms

- Massively long stream of data
 Instagram, search queries, network packets
 \(x_1, x_2, x_3, \ldots, x_n \)

- Data has grown: we can’t afford even storing it

- \(n \) inputs, space \(\sqrt{n} \); \(\log_{10} n \); \(\log n \)

- Efficient processing of stream
Streaming Algorithms

- Massively long stream of data
 Instagram, search queries, network packets
 \(x_1, x_2, x_3, \ldots, x_n \)

- Data has grown: we can’t afford even storing it

- \(n \) inputs, space \(\sqrt{n}; \quad \log^{10} n; \quad \log n \)

- Efficient processing of stream

- Mostly randomized algorithms
Missing Number
Missing Number

- Stream contains n distinct numbers in range $\{0, \ldots, n\}$ all but one
Missing Number

- Stream contains n distinct numbers in range $\{0, \ldots, n\}$

- Return the only missing number

 Could sort — linear space, go through stream many times
Missing Number

- Stream contains n distinct numbers in range \{0, \ldots, n\}

- Return the only missing number

- Efficient algorithm?
Streaming Algorithm

- Compute sum of all elements in stream:

\[S = x_1 + \ldots x_n \]
Streaming Algorithm

- Compute sum of all elements in stream:
 \[S = x_1 + \ldots x_n \]

- Sum of all numbers in range \(\{0, \ldots, n\} \) is
 \[S = \frac{n(n+1)}{2} \]
STREAMING ALGORITHM

- Compute sum of all elements in stream:
 \[S = x_1 + \ldots + x_n \]

- Sum of all numbers in range \(\{0, \ldots, n\} \) is
 \[S = \frac{n(n+1)}{2} \]

- Missing number is \(S - s = \frac{n(n+1)}{2} - s \)

See element \(\rightarrow \) process quickly - one addition \(O(\log n) \)
Streaming Algorithm

- Compute sum of all elements in stream:
 \[S = x_1 + \ldots x_n \]

- Sum of all numbers in range \{0, \ldots, n\} is
 \[S = \frac{n(n+1)}{2} \]

- Missing number is \(S - s = \frac{n(n+1)}{2} - s \)

- One pass through stream, efficient processing, \(O(\log n) \) space
Two Missing Elements

- Stream contains $n - 1$ distinct numbers in range $\{0, \ldots, n\}$
Two Missing Elements

- Stream contains $n - 1$ distinct numbers in range $\{0, \ldots, n\}$

- Return both missing numbers
Two Missing Elements

- Stream contains \(n - 1 \) distinct numbers in range \(\{0, \ldots, n\} \)

- Return both missing numbers

- Efficient algorithm?

\[
\begin{align*}
S & = x_1 + \ldots + x_{n-1} \\
S & = 0 + 1 + \ldots + n \\
S - s & = a + b \\
\text{Don't want to sort}
\end{align*}
\]
Streaming Algorithm

- Compute **sum and sum of squares** of all elements in stream:

 \[
 s = x_1 + \ldots + x_{n-1} \\
 t = x_1^2 + \ldots + x_{n-1}^2
 \]
Streaming Algorithm

- Compute **sum and sum of squares** of all elements in stream:

\[s = x_1 + \ldots + x_{n-1} \]
\[t = x_1^2 + \ldots + x_{n-1}^2 \]

- Sum of all numbers in range \(\{0, \ldots, n\} \) is

\[S = \frac{n(n+1)}{2} \]

Sum of squares of all numbers in range \(\{0, \ldots, n\} \) is

\[T = \frac{n(n+1)(2n+1)}{6} \]

\[T = \sum_{i=0}^{n} i^2 \]
If missing numbers are a and b, then

\begin{align*}
 U &= a + b = S - s \\
 V &= a^2 + b^2 = T - t \\

 W &= \frac{U^2 - V}{2} = \frac{(a+b)^2 - a^2 - b^2}{2} = \frac{2ab}{2} = ab
\end{align*}
\[u = a + b \]
\[w = a \cdot b \]
\[a = u - b \]

\[w = (u - b) \cdot b \]

\[b^2 - ub + w = 0 \]

\[\Delta = u^2 - 4w \]

\[b = \frac{u \pm \sqrt{u^2 - 4w}}{2} \]

Two solutions are the two missing els.
Streaming Algorithm

- If missing numbers are a and b, then

 \[
 S = x_1 + \ldots + x_n \\
 T = x_1^2 + \ldots + x_n^2 \\
 a + b = S - s \\
 a^2 + b^2 = T - t
 \]

- This can be generalized.

 - One pass through stream, efficient processing, $O(\log n)$ space

- Keys are missing.
Majority Element
MAJORITY ELEMENT

\(n \) - length of stream

- Stream has element occurring > \(n/2 \) times
MAJORITY ELEMENT

- Stream has element occurring $> n/2$ times

- Find it!

 Sort, Median
 We can't afford storing insert
Streaming Algorithm

- $\text{count} \leftarrow 0$; $m \leftarrow \perp \text{Null}$
Streaming Algorithm

- count $\leftarrow 0$; $m \leftarrow \perp$

- For each element x_i of Stream:
STREAMING ALGORITHM

- $\text{count} \leftarrow 0; \quad m \leftarrow \perp$

- For each element x_i of Stream:
 - If $\text{count} = 0$, then $m \leftarrow x_i$ and $\text{count} \leftarrow 1$
Streaming Algorithm

- count ← 0; m ← ⊥

- For each element x_i of Stream:
 - If count = 0, then m ← x_i and count ← 1
 - Elself $x_i = m$, then count ++
Streaming Algorithm

- count ← 0; m ← ⊥

- For each element x_i of Stream:
 - If count = 0, then m ← x_i and $\text{count} < 1$
 - Elseif $x_i = m$, then count ++
 - Else count -- $x_i \neq m$
STREAMING ALGORITHM

count ← 0; m ← ⊥

For each element x_i of Stream:
 - If count = 0, then $m \leftarrow x_i$ and
 - Elself $x_i = m$, then count ++
 - Else count ← $x_i + m$

Return m
Example

\[n = 7 \quad MoS = 2 \]

\[
\begin{array}{c}
m \leftarrow X \\
\text{count} \leftarrow 0 \\
1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \\
\end{array}
\]

Return \ 2

\[
\begin{array}{c}
\text{count} \\
\end{array}
\]

\[
\begin{array}{c}
m = 1 \\
m = 2 \\
m = 3 \\
m = 2 \\
m = 3 \\
m = 2 \\
m = 2 \\
\end{array}
\]

\[
\begin{array}{c}
\text{count} \geq 0 \\
\end{array}
\]
\(\text{PROOF} \)

\(\text{variable count}_1 \)

\(\text{this is only for analysis not for algorithm} \)

\(\text{if m = Maj} \quad \text{time Maj elt} \)

\[\text{count}_1 = \begin{cases} \text{count} & \text{if m = Maj} \\ \text{count} & \text{if m \neq Maj} \\ -\text{count} & \text{if m = Maj} \\ -\text{count} & \text{if m \neq Maj} \end{cases} \]

\(\text{When I see Maj, increment count}_1 \)

\(\text{Proof:} \)

\(\text{if m = Maj} \Rightarrow \text{count}_1++, \quad \text{count}_1++ \)

\(\text{if m \neq Maj} \Rightarrow \text{count}_1--; \quad \text{count}_1++ \)

\(\text{See Maj > } \frac{n}{2} \text{ times} \Rightarrow \text{count}_1 \) is incremented > \(\frac{n}{2} \)

\(\Rightarrow \text{count}_1 \) is decremented < \(\frac{n}{2} \)

\(\text{In the end,} \)

\(\sqrt{\text{count}_1 > 0} \Rightarrow \text{count}_1 = \text{count}_1 = \text{count} \Rightarrow m = \text{Maj} \Rightarrow \text{output Maj} \)
- Pains up distinct els
- Kills all these pains
- Remaining els are Maj

\[\frac{n}{2} + 1 \quad \text{and} \quad n - 1 \]

Majority els remain
Assume there is Maj in stream ($\geq \frac{n}{2}$ occurrences),

Without this assumption, we'll make two passes through input stream.

1. Candidate m =

2. Count how many times m appears in stream.

For KEN, k-Heavy Hitters: Find all els that appear $\geq \frac{n}{k}$ in the stream ($\leq k$ such els)

$\text{Maj} = \text{case } k=2$
Misra-Gries Algorithm

- \(\text{count}_1, \ldots, \text{count}_k \leftarrow 0; \ m_1, \ldots, m_k \leftarrow \perp \)

- For each element \(x_i \) of Stream:
 - If \(x_i = m_j \), then \(\text{count}_j \leftarrow + \)
 - Else
 - Let \(\text{count}_j \) be min in \(\text{count}_1, \ldots, \text{count}_k \)
 - If \(\text{count}_j = 0 \), then \(m_j = x_i; \ \text{count}_j = 1 \)
 - Else \(\text{count}_1 \leftarrow -, \ldots, \text{count}_k \leftarrow - \)

- Return \(m_1, \ldots, m_k \) contain all els of stream that appear \(\geq k \times \text{times} \)
Approximate Counting
• Router receives stream of network packages
• Router receives stream of network packages

• Want to count number of packages from IP “1.2.3.4”

EQ: \[\leq n \text{ of them in the stream} \]

\[\text{output length of the stream} \]
• Router receives stream of network packages

• Want to count number of packages from IP “1.2.3.4”

• Efficient algorithm?

\[
\text{count} = 0
\]

See input: \(\text{count} = \text{count} + 1 \)

In the end, \(\text{count} = \text{stream length} \)

\(\log_2(n+1) \) bits
Can we use fewer than login bits?

Input length \(\leq n \)

outputs \(\in \{0, 1, 2, \ldots, n-1, n^2\} \)

2 bits

\[
\begin{array}{c|c}
00 & 01 \\
10 & 11 \\
\end{array}
\]

\(\leq 4 \) distinct answers

IF \(\log_2 \) login bits => different answers

\[\leq 2^{\log_2 n} = n \]

\(\log_2 (n+1) \) bits is optimal
• Router receives stream of network packages

• Want to count number of packages from IP “1.2.3.4”

• Efficient algorithm?

• Efficient approximate algorithm?

\[\log \log n < \text{exponentially better than previous sol} \]
n

Trivial alg stones n

\[n = 147 \quad 10010011 \] \[\log n \]

What if instead of stoning \(n \) in binary, I'm stoning the length of "n in binary"? Instead of stoning 147, I'd stone numbers

Instead of stoning 147, I'd stone numbers

\[1000 \]

Instead of \(\log \) facts to write \(f_1, \ldots, n \)
stone log\(\log_2 \) bits to write \(f_1, \ldots, \log n \)

If length = 4
\[\begin{align*}
8 & \leq n \leq 15 \\
2^{\text{length}-1} & \leq n < 2^{\text{length}}
\end{align*} \]
MORRIS ALGORITHM

\[C = \text{length of } n \text{ in binary} \]

\[n \approx 2^C \]

When should I want to increment \(C \)?

I want to increment \(C \) often seeing \(2^C \) new els

Now see new el

w. p. \(\frac{1}{2^C} \) \(C++ \)

w. p. \((1 - \frac{1}{2^C}) \) don't update \(C \)

After seeing \(2^C \) els, I expect to increment \(C \) once
MORRIS ALGORITHM

\[
\begin{align*}
\text{n} &= 0 \\
2^c - 1 &\approx n
\end{align*}
\]

- \(c \leftarrow 0 \)
MORRIS ALGORITHM

• $c \gets 0$

• When see next element:
 • with probability $\frac{1}{2^c}$ increment c
 • with probability $1 - \frac{1}{2^c}$ do nothing
MORRIS ALGORITHM

\[n \approx 2^c - 1 \]

- \(c \leftarrow 0 \)
- When see next element:
 - with probability \(\frac{1}{2^c} \) increment \(c \)
 - with probability \(1 - \frac{1}{2^c} \) do nothing
- Return \(2^c - 1 \)
Probability of Success

- **Thm**
 \[\mathbb{E}[\text{output}] = n \]

- **Markov's**
 \[\mathbb{E}[\text{output} \geq 5n] < \frac{1}{5} \]

 1. **Markov's ineq:** \(\Pr[\text{output} \notin [n-0(n), n+0(n)]] < 0.9 \)

 \[\implies \]

 2. **Amplify prob. of success by repeating this alg several times:**

 \[\Pr[\text{output} \notin \left[\frac{n}{2}, 2n \right]] < 0.01 \]
PROBABILITY OF SUCCESS

- $\mathbb{E}[\text{output}] = n$

- By Markov’s, $\Pr[\text{output} \geq 2n] \leq 1/2$
PROBABILITY OF SUCCESS

• $\mathbb{E}[\text{output}] = n$

• By Markov’s, $\Pr[\text{output} \geq 2n] \leq 1/2$

• Similar inequalities show that $\Pr[\text{output} \in [n - O(n), n + O(n)] \geq 0.9$
PROBABILITY OF SUCCESS

• \(\mathbb{E}[\text{output}] = n \)

• By Markov’s, \(\Pr[\text{output} \geq 2n] \leq 1/2 \)

• Similar inequalities show that
 \(\Pr[\text{output} \in [n - O(n), n + O(n)] \geq 0.9 \)

• Again, repeating Algorithm several times significantly amplifies probability of success
SUMMARY

- One pass through stream may be sufficient
SUMMARY

• One pass through stream may be sufficient

• Use Randomness and Approximation
SUMMARY

• One pass through stream may be sufficient

• Use Randomness and Approximation

• Markov’s inequality: from Expectation to Probability
SUMMARY

• One pass through stream may be sufficient

• Use Randomness and Approximation

• Markov’s inequality: from Expectation to Probability

• Amplify probability by Repetitions