GEMS OF TCS

DATA STRUCTURES

Sasha Golovnev September 5, 2023

Stack, Queue, List, Heap

Search Trees

hash(unsigned x) {
 x ^= x >> (w-m);
 return (a*x) >> (w-m);
}

Hash Tables

· Some problems are too hard to solve exactly

· Some problems are too hard to solve exactly

Approximation

Some problems are too hard to solve exactly

Approximation

Randomness

- Some problems are too hard to solve exactly
- Approximation
- Randomness

Today: Preprocessing

EXAMPLES

 Graph Distances: Preprocess a road network in order to efficiently compute distance queries between cities (Google Maps)

EXAMPLES

- Graph Distances: Preprocess a road network in order to efficiently compute distance queries between cities (Google Maps)
- Clustering: Preprocess a set of movies in order to efficiently find closest movie to a query movie (Netflix recommendations)

Queries

Queries

New York — Washington

Queries

Queries

Stealing Passwords

haveibeenpwned.com: Your account has been compromised

hash(111111)=nh83l0

haveibeenpwned.com: Your account has been compromised

hash(qwerty)=1xe4ht hash(111111)=nh83l0

 (Cryptographic) hash function maps strings to strings such that it's hard to invert

- (Cryptographic) hash function maps strings to strings such that it's hard to invert
- Ideally, to find a password that leads to a fixed hash value, one needs to brute force all possible passwords

- (Cryptographic) hash function maps strings to strings such that it's hard to invert
- Ideally, to find a password that leads to a fixed hash value, one needs to brute force all possible passwords
- Hash functions are publicly known (SHA-3)

- (Cryptographic) hash function maps strings to strings such that it's hard to invert
- Ideally, to find a password that leads to a fixed hash value, one needs to brute force all possible passwords
- Hash functions are publicly known (SHA-3)
- For now, consider hash functions $f: \{1, ..., N\} \rightarrow \{1, ..., N\}$ that are bijections

• Let $f: \{1, \dots, N\} \rightarrow \{1, \dots, N\}$ be a bijection

- Let $f: \{1, \dots, N\} \rightarrow \{1, \dots, N\}$ be a bijection
- Invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$

- Let $f: \{1, \ldots, N\} \rightarrow \{1, \ldots, N\}$ be a bijection
- Invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$
- Let's define a directed graph on N vertices with edges $x \to f(x)$

- Let $f: \{1, \dots, N\} \rightarrow \{1, \dots, N\}$ be a bijection
- Invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$
- Let's define a directed graph on N vertices with edges $x \to f(x)$
- In- and out-degrees of all vertices are 1

- Let $f: \{1, \dots, N\} \rightarrow \{1, \dots, N\}$ be a bijection
- Invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$
- Let's define a directed graph on N vertices with edges $x \to f(x)$
- In- and out-degrees of all vertices are 1
- Thus, this graph is a union of cycles

Store x landmarks,

Store x landmarks, and links 5 to previous landmarks space $S \approx \sqrt{N}$

• Let ST = N

- Let ST = N
- Let's define a directed graph on N vertices with edges $x \to f(x)$

- Let ST = N
- Let's define a directed graph on N vertices with edges $x \to f(x)$
- Partition the graph into cycles

- Let ST = N
- Let's define a directed graph on N vertices with edges $x \to f(x)$
- Partition the graph into cycles
- Ignore cycles of length $\leq T$

- Let ST = N
- Let's define a directed graph on N vertices with edges $x \to f(x)$
- Partition the graph into cycles
- Ignore cycles of length $\leq T$
- In all other cycles store every Tth vertex as a landmark

- Let ST = N
- Let's define a directed graph on N vertices with edges $x \to f(x)$
- · Partition the graph into cycles
- Ignore cycles of length < T
- In all other cycles store every Tth vertex as a landmark
- Space: S, query time: T

Prohibited Passwords

 Check if entered password is in the list of m prohibited passwords

- Check if entered password is in the list of m prohibited passwords
- We can store m strings, check in $\sim \log m$ time

- Check if entered password is in the list of m prohibited passwords
- We can store m strings, check in $\sim \log m$ time
- Bloom filters: store $\sim m$ bits, check in O(1) time

- Check if entered password is in the list of m prohibited passwords
- We can store m strings, check in $\sim \log m$ time
- Bloom filters: store $\sim m$ bits, check in O(1) time
- We'll be wrong with small probability

We want a data structure that supports two operations

- We want a data structure that supports two operations
 - Insert(x)

- We want a data structure that supports two operations
 - Insert(x)
 - Lookup(x)

- We want a data structure that supports two operations
 - Insert(x)
 - Lookup(x)
- Hashtables: less efficient but don't make mistakes

- We want a data structure that supports two operations
 - Insert(x)
 - Lookup(x)
- Hashtables: less efficient but don't make mistakes
- Bloom fitler will use array of n bits A[0], ..., A[n-1], initialized with zeros

- We want a data structure that supports two operations
 - Insert(x)
 - Lookup(x)
- Hashtables: less efficient but don't make mistakes
- Bloom fitler will use array of n bits A[0], ..., A[n-1], initialized with zeros
- We'll use k = O(1) hash functions

HASH FUNCTIONS

• We have k hash functions f_1, \ldots, f_k from strings to $\{0, \ldots, n-1\}$

HASH FUNCTIONS

• We have k hash functions f_1, \ldots, f_k from strings to $\{0, \ldots, n-1\}$

Assume that functions are independent and uniform random

BLOOM FITLER

• Insert(x):

- for $i = 1, \ldots, k$,
 - $A[f_i(x)] \leftarrow 1$

BLOOM FITLER

- Insert(x):
 - for $i = 1, \ldots, k$,
 - $A[f_i(x)] \leftarrow 1$
- Lookup(x):
 - return 1 iff for every i = 1, ..., k,
 - $A[f_i(x)] = 1$

ANALYSIS