GEMS OF TCS

STREAMING ALGORITHMS

Sasha Golovnev September 6, 2023

FRUIT GAME

Credit: Jelani Nelson (https://www.youtube.com/watch?v=CorP4I23wOo&t=2434s)

• Massively long stream of data

• Massively long stream of data Instagram, search queries, network packets

 Massively long stream of data Instagram, search queries, network packets x₁, x₂, x₃, ..., x_n

- Massively long stream of data Instagram, search queries, network packets x₁, x₂, x₃, ..., x_n
- Data has grown: we can't afford even storing it

- Massively long stream of data Instagram, search queries, network packets x₁, x₂, x₃,..., x_n
- Data has grown: we can't afford even storing it
- *n* inputs, space \sqrt{n} ; $\log^{10} n$; $\log n$

- Massively long stream of data Instagram, search queries, network packets x₁, x₂, x₃,..., x_n
- Data has grown: we can't afford even storing it
- *n* inputs, space \sqrt{n} ; $\log^{10} n$; $\log n$
- Efficient processing of stream

- Massively long stream of data Instagram, search queries, network packets x₁, x₂, x₃,..., x_n
- Data has grown: we can't afford even storing it
- *n* inputs, space \sqrt{n} ; $\log^{10} n$; $\log n$
- Efficient processing of stream
- Mostly randomized algorithms

Missing Number

MISSING NUMBER

• Stream contains *n* distinct numbers in range $\{0, \ldots, n\}$

MISSING NUMBER

- Stream contains *n* distinct numbers in range $\{0, \ldots, n\}$
- Return the only missing number

MISSING NUMBER

- Stream contains *n* distinct numbers in range $\{0, \ldots, n\}$
- Return the only missing number

• Efficient algorithm?

• Compute sum of all elements in stream:

$$S = X_1 + \ldots X_n$$

• Compute sum of all elements in stream:

$$S = X_1 + \ldots X_n$$

• Sum of all numbers in range $\{0, ..., n\}$ is $S = \frac{n(n+1)}{2}$

• Compute sum of all elements in stream:

$$S = X_1 + \ldots X_n$$

- Sum of all numbers in range $\{0, ..., n\}$ is $S = \frac{n(n+1)}{2}$
- Missing number is $S s = \frac{n(n+1)}{2} s$

• Compute sum of all elements in stream:

$$S = X_1 + \ldots X_n$$

- Sum of all numbers in range $\{0, ..., n\}$ is $S = \frac{n(n+1)}{2}$
- Missing number is $S s = \frac{n(n+1)}{2} s$
- One pass through stream, efficient processing, O(log n) space

TWO MISSING ELEMENTS

• Stream contains n - 1 distinct numbers in range $\{0, \ldots, n\}$

TWO MISSING ELEMENTS

• Stream contains n - 1 distinct numbers in range $\{0, \ldots, n\}$

• Return both missing numbers

TWO MISSING ELEMENTS

• Stream contains n - 1 distinct numbers in range $\{0, \dots, n\}$

• Return both missing numbers

• Efficient algorithm?

• Compute sum and sum of squares of all elements in stream:

$$S = X_1 + \dots X_{n-1}$$

 $t = X_1^2 + \dots X_{n-1}^2$

• Compute sum and sum of squares of all elements in stream:

$$S = X_1 + \dots X_{n-1}$$

 $t = X_1^2 + \dots X_{n-1}^2$

• Sum of all numbers in range $\{0, ..., n\}$ is $S = \frac{n(n+1)}{2}$ Sum of squares of all numbers in range $\{0, ..., n\}$ is $T = \frac{n(n+1)(2n+1)}{6}$

• If missing numbers are *a* and *b*, then

a + b = S - s $a^2 + b^2 = T - t$

• If missing numbers are *a* and *b*, then

a + b = S - s $a^2 + b^2 = T - t$

 One pass through stream, efficient processing, O(log n) space

Majority Element

MAJORITY ELEMENT

• Stream has element occuring > n/2 times

MAJORITY ELEMENT

• Stream has element occuring > n/2 times

• Find it!

• count $\leftarrow 0$; m $\leftarrow \perp$

- count $\leftarrow 0$; m $\leftarrow \perp$
- For each element *x_i* of Stream:

- count \leftarrow 0; m $\leftarrow \perp$
- For each element *x_i* of Stream:
 - If count = 0, then $m \leftarrow x_i$ and count $\leftarrow 1$

- count \leftarrow 0; m $\leftarrow \perp$
- For each element *x_i* of Stream:
 - If count = 0, then $m \leftarrow x_i$ and count $\leftarrow 1$
 - Elself $x_i = m$, then count ++

- count \leftarrow 0; m $\leftarrow \perp$
- For each element *x_i* of Stream:
 - If count = 0, then $m \leftarrow x_i$ and count $\leftarrow 1$
 - Elself $x_i = m$, then count ++
 - Else count --

- count \leftarrow 0; m $\leftarrow \perp$
- For each element *x_i* of Stream:
 - If count = 0, then $m \leftarrow x_i$ and count $\leftarrow 1$
 - Elself $x_i = m$, then count ++
 - Else count --
- Return m

EXAMPLE

Proof

ANOTHER VIEW

MISRA-GRIES ALGORITHM

MISRA-GRIES ALGORITHM

- $\textbf{\cdot} \hspace{0.1 count} count_{1}, \ldots, count_{k} \leftarrow 0; \hspace{0.1 cm} m_{1}, \ldots, m_{k} \leftarrow \bot$
- For each element *x_i* of Stream:
 - If $x_i = m_j$, then count_j ++
 - Else
 - Let $count_j$ be min in $count_1, \ldots count_k$
 - If $count_j = 0$, then $m_j = x_i$; $count_j = 1$
 - Else count₁ -, ..., count_k -
- Return m₁,..., m_k

Approximate Counting

• Want to count number of packages from IP "1.2.3.4"

- Want to count number of packages from IP "1.2.3.4"
- Efficient algorithm?

- Want to count number of packages from IP "1.2.3.4"
- Efficient algorithm?
- Efficient approximate algorithm?

OVERVIEW

• $c \leftarrow 0$

- $c \leftarrow 0$
- When see next element:
 - with probability $\frac{1}{2^c}$ increment c
 - with probability $1 \frac{1}{2^c}$ do nothing

- $c \leftarrow 0$
- When see next element:
 - with probability $\frac{1}{2^c}$ increment c
 - with probability $1 \frac{1}{2^c}$ do nothing
- Return 2^c 1

ANALYSIS

• $\mathbb{E}[\text{output}] = n$

- $\mathbb{E}[\text{output}] = n$
- By Markov's, $Pr[output \ge 2n] \le 1/2$

- $\mathbb{E}[\text{output}] = n$
- By Markov's, $Pr[output \ge 2n] \le 1/2$
- Similar inequalities show that $Pr[output \in [n O(n), n + O(n)] \ge 0.9$

- $\mathbb{E}[\text{output}] = n$
- By Markov's, $Pr[output \ge 2n] \le 1/2$
- Similar inequalities show that $Pr[output \in [n O(n), n + O(n)] \ge 0.9$
- Again, repeating Algorithm several times significantly amplifies probability of success

• One pass through stream may be sufficient

- One pass through stream may be sufficient
- Use Randomness and Approximation

- One pass through stream may be sufficient
- Use Randomness and Approximation
- Markov's ineqaulity: from Expectation to Probability

- One pass through stream may be sufficient
- Use Randomness and Approximation
- Markov's ineqaulity: from Expectation to Probability
- Amplify probability by Repetitions