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STREAMING ALGORITHMS

• Massively long stream of data

Instagram, search queries, network packets
x1, x2, x3, . . . , xn

• Data has grown: we can’t afford even storing it

• n inputs, space
√
n; log10 n; log n

• Efficient processing of stream

• Mostly randomized algorithms
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MISSING NUMBER

• Stream contains n distinct numbers in range
{0, . . . ,n}

• Return the only missing number

• Efficient algorithm?
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STREAMING ALGORITHM

• Compute sum of all elements in stream:

s = x1 + . . . xn

• Sum of all numbers in range {0, . . . ,n} is
S = n(n+1)

2

• Missing number is S− s = n(n+1)
2 − s

• One pass through stream, efficient processing,
O(log n) space
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TWO MISSING ELEMENTS

• Stream contains n− 1 distinct numbers
in range {0, . . . ,n}

• Return both missing numbers

• Efficient algorithm?
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STREAMING ALGORITHM

• Compute sum and sum of squares of all
elements in stream:

s = x1 + . . . xn−1
t = x21 + . . . x2n−1

• Sum of all numbers in range {0, . . . ,n} is
S = n(n+1)

2
Sum of squares of all numbers in range
{0, . . . ,n} is T = n(n+1)(2n+1)

6
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STREAMING ALGORITHM

• If missing numbers are a and b, then

a+ b = S− s
a2 + b2 = T− t

• One pass through stream, efficient processing,
O(log n) space
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• Stream has element occuring > n/2 times

• Find it!
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STREAMING ALGORITHM

• count← 0; m←⊥

• For each element xi of Stream:
• If count = 0, then m← xi and count← 1
• ElseIf xi = m, then count++
• Else count--

• Return m
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ANOTHER VIEW



MISRA-GRIES ALGORITHM

• count1, . . . , countk ← 0; m1, . . . ,mk ←⊥

• For each element xi of Stream:
• If xi = mj, then countj ++
• Else

• Let countj be min in count1, . . . countk
• If countj = 0, then mj = xi; countj = 1
• Else count1 --, . . . , countk --

• Return m1, . . . ,mk
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Approximate Counting



• Router receives stream of network packages

• Want to count number of packages from
IP “1.2.3.4′′

• Efficient algorithm?

• Efficient approximate algorithm?
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MORRIS ALGORITHM

• c← 0

• When see next element:
• with probability 1

2c increment c
• with probability 1− 1

2c do nothing
• Return 2c − 1
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PROBABILITY OF SUCCESS

• E[output] = n

• By Markov’s, Pr[output ≥ 2n] ≤ 1/2

• Similar inequalities show that
Pr[output ∈ [n− O(n),n+ O(n)] ≥ 0.9

• Again, repeating Algorithm several times
significantly amplifies probability of success
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SUMMARY

• One pass through stream may be sufficient

• Use Randomness and Approximation

• Markov’s ineqaulity: from Expectation to
Probability

• Amplify probability by Repetitions
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