Gems of TCS

Streaming Algorithms

Sasha Golovnev
September 6, 2023

Fruit Game

Credit: Jelani Nelson

(https://www.youtube.com/watch?v=CorP4I23wOo\&t=2434s)

Streaming Algorithms

- Massively long stream of data

Streaming Algorithms

- Massively long stream of data Instagram, search queries, network packets

Streaming Algorithms

- Massively long stream of data Instagram, search queries, network packets $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$

Streaming Algorithms

- Massively long stream of data Instagram, search queries, network packets $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
- Data has grown: we can't afford even storing it

Streaming Algorithms

- Massively long stream of data Instagram, search queries, network packets $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
- Data has grown: we can't afford even storing it
- n inputs, space $\sqrt{n} ; \log ^{10} n ; \log n$

Streaming Algorithms

- Massively long stream of data Instagram, search queries, network packets $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
- Data has grown: we can't afford even storing it
- n inputs, space $\sqrt{n} ; \log ^{10} n ; \log n$
- Efficient processing of stream

Streaming Algorithms

- Massively long stream of data Instagram, search queries, network packets $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
- Data has grown: we can't afford even storing it
- n inputs, space $\sqrt{n} ; \log ^{10} n ; \log n$
- Efficient processing of stream
- Mostly randomized algorithms

Missing Number

Missing Number

- Stream contains n distinct numbers in range $\{0, \ldots, n\}$

Missing Number

- Stream contains n distinct numbers in range $\{0, \ldots, n\}$
- Return the only missing number

Missing Number

- Stream contains n distinct numbers in range $\{0, \ldots, n\}$
- Return the only missing number
- Efficient algorithm?

Streaming Algorithm

- Compute sum of all elements in stream:

$$
S=x_{1}+\ldots x_{n}
$$

Streaming Algorithm

- Compute sum of all elements in stream:

$$
s=x_{1}+\ldots x_{n}
$$

- Sum of all numbers in range $\{0, \ldots, n\}$ is $S=\frac{n(n+1)}{2}$

Streaming Algorithm

- Compute sum of all elements in stream:

$$
s=x_{1}+\ldots x_{n}
$$

- Sum of all numbers in range $\{0, \ldots, n\}$ is $S=\frac{n(n+1)}{2}$
- Missing number is $S-S=\frac{n(n+1)}{2}-S$

Streaming Algorithm

- Compute sum of all elements in stream:

$$
s=x_{1}+\ldots x_{n}
$$

- Sum of all numbers in range $\{0, \ldots, n\}$ is $S=\frac{n(n+1)}{2}$
- Missing number is $S-S=\frac{n(n+1)}{2}-S$
- One pass through stream, efficient processing, O($\log n)$ space

Two Missing Elements

- Stream contains $n-1$ distinct numbers in range $\{0, \ldots, n\}$

Two Missing Elements

- Stream contains $n-1$ distinct numbers in range $\{0, \ldots, n\}$
- Return both missing numbers

Two Missing Elements

- Stream contains $n-1$ distinct numbers in range $\{0, \ldots, n\}$
- Return both missing numbers
- Efficient algorithm?

Streaming Algorithm

- Compute sum and sum of squares of all elements in stream:

$$
\begin{aligned}
& s=x_{1}+\ldots x_{n-1} \\
& t=x_{1}^{2}+\ldots x_{n-1}^{2}
\end{aligned}
$$

Streaming Algorithm

- Compute sum and sum of squares of all elements in stream:

$$
\begin{aligned}
s & =x_{1}+\ldots x_{n-1} \\
t & =x_{1}^{2}+\ldots x_{n-1}^{2}
\end{aligned}
$$

- Sum of all numbers in range $\{0, \ldots, n\}$ is $S=\frac{n(n+1)}{2}$
Sum of squares of all numbers in range $\{0, \ldots, n\}$ is $T=\frac{n(n+1)(2 n+1)}{6}$

Streaming Algorithm

- If missing numbers are a and b, then

$$
\begin{aligned}
a+b & =S-s \\
a^{2}+b^{2} & =T-t
\end{aligned}
$$

Streaming Algorithm

- If missing numbers are a and b, then

$$
\begin{aligned}
a+b & =S-s \\
a^{2}+b^{2} & =T-t
\end{aligned}
$$

- One pass through stream, efficient processing, $O(\log n)$ space

Majority Element

Majority Element

- Stream has element occuring > n/2 times

MAjority Element

- Stream has element occuring > n/2 times
- Find it!

Streaming Algorithm

- count $\leftarrow 0 ; \quad \mathrm{m} \leftarrow \perp$

Streaming Algorithm

- count $\leftarrow 0 ; \quad \mathrm{m} \leftarrow \perp$
- For each element x_{i} of Stream:

Streaming Algorithm

- count $\leftarrow 0 ; \quad \mathrm{m} \leftarrow \perp$
- For each element x_{i} of Stream:
- If count $=0$, then $\mathrm{m} \leftarrow x_{i}$ and count $\leftarrow 1$

Streaming Algorithm

- count $\leftarrow 0 ; \quad \mathrm{m} \leftarrow \perp$
- For each element x_{i} of Stream:
- If count $=0$, then $\mathrm{m} \leftarrow x_{i}$ and count $\leftarrow 1$
- Elself $x_{i}=m$, then count ++

Streaming Algorithm

- count $\leftarrow 0 ; \quad \mathrm{m} \leftarrow \perp$
- For each element x_{i} of Stream:
- If count $=0$, then $\mathrm{m} \leftarrow x_{i}$ and count $\leftarrow 1$
- Elself $x_{i}=m$, then count ++
- Else count --

Streaming Algorithm

- count $\leftarrow 0 ; \quad \mathrm{m} \leftarrow \perp$
- For each element x_{i} of Stream:
- If count $=0$, then $\mathrm{m} \leftarrow x_{i}$ and count $\leftarrow 1$
- Elself $x_{i}=m$, then count ++
- Else count --
- Return m

EXAMPLE

Proof

Another View

Misra-Gries Algorithm

MisRA-Gries Algorithm

- count $_{1}, \ldots$, count $_{k} \leftarrow 0 ; \mathrm{m}_{1}, \ldots, \mathrm{~m}_{k} \leftarrow \perp$
- For each element x_{i} of Stream:
- If $x_{i}=m_{j}$, then count ${ }_{j}++$
- Else
- Let count ${ }_{j}$ be min in count ${ }_{1}, \ldots$ count $_{k}$
- If count $_{j}=0$, then $\mathrm{m}_{j}=x_{i} ; \quad$ count $_{j}=1$
- Else count ${ }_{1}--, \ldots$, count $_{R}--$
- Return $\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{k}}$

Approximate Counting

- Router receives stream of network packages
- Router receives stream of network packages
- Want to count number of packages from IP "1.2.3.4"
- Router receives stream of network packages
- Want to count number of packages from IP "1.2.3.4"
- Efficient algorithm?
- Router receives stream of network packages
- Want to count number of packages from IP "1.2.3.4"
- Efficient algorithm?
- Efficient approximate algorithm?

Overview

Morris Algorithm

Morris Algorithm

- $c \leftarrow 0$

Morris Algorithm

- $C \leftarrow 0$
- When see next element:
- with probability $\frac{1}{2^{c}}$ increment c
- with probability $1-\frac{1}{2^{c}}$ do nothing

Morris Algorithm

- $C \leftarrow 0$
- When see next element:
- with probability $\frac{1}{2^{c}}$ increment c
- with probability $1-\frac{1}{2^{c}}$ do nothing
- Return $2^{\text {C }}-1$

ANALYSIS

Probability of Success

- $\mathbb{E}[$ output $]=n$

Probability of Success

- $\mathbb{E}[$ output $]=n$
- By Markov's, Pr[output $\geq 2 n] \leq 1 / 2$

Probability of Success

- $\mathbb{E}[$ output $]=n$
- By Markov's, Pr[output $\geq 2 n] \leq 1 / 2$
- Similar inequalities show that $\operatorname{Pr}[$ output $\in[n-O(n), n+O(n)] \geq 0.9$

Probability of Success

- $\mathbb{E}[$ output $]=n$
- By Markov's, $\operatorname{Pr}[$ output $\geq 2 n] \leq 1 / 2$
- Similar inequalities show that $\operatorname{Pr}[$ output $\in[n-O(n), n+O(n)] \geq 0.9$
- Again, repeating Algorithm several times significantly amplifies probability of success

SUMMARY

- One pass through stream may be sufficient

SUMMARY

- One pass through stream may be sufficient
- Use Randomness and Approximation

SUMMARY

- One pass through stream may be sufficient
- Use Randomness and Approximation
- Markov's ineqaulity: from Expectation to Probability

SUMMARY

- One pass through stream may be sufficient
- Use Randomness and Approximation
- Markov's ineqaulity: from Expectation to Probability
- Amplify probability by Repetitions

