GEMS OF TCS

STREAMING ALGORITHMS

Sasha Golovnev
September 6, 2023
Streaming Algorithms

- Massively long stream of data

Data has grown: we can’t afford even storing it

Efficient processing of stream

Mostly randomized algorithms
STREAMING ALGORITHMS

- Massively long stream of data
 Instagram, search queries, network packets
• Massively long stream of data
 Instagram, search queries, network packets
 \(x_1, x_2, x_3, \ldots, x_n\)
STREAMING ALGORITHMS

• Massively long stream of data
 Instagram, search queries, network packets
 $x_1, x_2, x_3, \ldots, x_n$

• Data has grown: we can’t afford even storing it
STREAMING ALGORITHMS

• Massively long stream of data
 Instagram, search queries, network packets
 \(x_1, x_2, x_3, \ldots, x_n \)

• Data has grown: we can’t afford even storing it

• \(n \) inputs, space \(\sqrt{n}; \log_{10} n; \log n \)
Streaming Algorithms

- Massively long stream of data
 Instagram, search queries, network packets
 $x_1, x_2, x_3, \ldots, x_n$
- Data has grown: we can’t afford even storing it
- n inputs, space \sqrt{n}; $\log^{10} n$; $\log n$
- Efficient processing of stream
STREAMING ALGORITHMS

• Massively long stream of data
 Instagram, search queries, network packets
 \(x_1, x_2, x_3, \ldots, x_n\)

• Data has grown: we can’t afford even storing it

• \(n\) inputs, space \(\sqrt{n}; \ \log^{10} n; \ \log n\)

• Efficient processing of stream

• Mostly randomized algorithms
Missing Number
Stream contains n distinct numbers in range \{0, \ldots, n\}
MISSING NUMBER

• Stream contains n distinct numbers in range \{0, \ldots, n\}

• Return the only missing number
MISSING NUMBER

• Stream contains \(n \) distinct numbers in range \(\{0, \ldots, n\} \)

• Return the only missing number

• Efficient algorithm?
STREAMING ALGORITHM

• Compute sum of all elements in stream:

\[S = x_1 + \ldots + x_n \]
STREAMING ALGORITHM

- Compute sum of all elements in stream:
 \[S = x_1 + \ldots + x_n \]

- Sum of all numbers in range \{0, \ldots, n\} is
 \[S = \frac{n(n+1)}{2} \]
• Compute sum of all elements in stream:

\[S = X_1 + \ldots X_n \]

• Sum of all numbers in range \(\{0, \ldots, n\} \) is

\[S = \frac{n(n+1)}{2} \]

• Missing number is \(S - s = \frac{n(n+1)}{2} - s \)
Streaming Algorithm

- Compute sum of all elements in stream:
 \[S = x_1 + \ldots + x_n \]

- Sum of all numbers in range \(\{0, \ldots, n\} \) is
 \[S = \frac{n(n+1)}{2} \]

- Missing number is \(S - s = \frac{n(n+1)}{2} - s \)

- One pass through stream, efficient processing, \(O(\log n) \) space
TWO MISSING ELEMENTS

• Stream contains $n - 1$ distinct numbers in range $\{0, \ldots, n\}$
TWO MISSING ELEMENTS

- Stream contains \(n - 1 \) distinct numbers in range \(\{0, \ldots, n\} \)

- Return both missing numbers
TWO MISSING ELEMENTS

- Stream contains \(n - 1 \) distinct numbers in range \(\{0, \ldots, n\} \)

- Return both missing numbers

- Efficient algorithm?
Streaming Algorithm

- Compute sum and sum of squares of all elements in stream:

\[s = x_1 + \ldots + x_{n-1} \]
\[t = x_1^2 + \ldots + x_{n-1}^2 \]
Streaming Algorithm

• Compute sum and sum of squares of all elements in stream:

\[S = x_1 + \ldots x_{n-1} \]
\[t = x_1^2 + \ldots x_{n-1}^2 \]

• Sum of all numbers in range \{0, \ldots, n\} is

\[S = \frac{n(n+1)}{2} \]

Sum of squares of all numbers in range \{0, \ldots, n\} is

\[T = \frac{n(n+1)(2n+1)}{6} \]
If missing numbers are a and b, then

\[a + b = S - s \]
\[a^2 + b^2 = T - t \]
Streaming Algorithm

• If missing numbers are a and b, then

$$a + b = S - s$$

$$a^2 + b^2 = T - t$$

• One pass through stream, efficient processing, $O(\log n)$ space
Majority Element
MAJORITY ELEMENT

- Stream has element occurring > \(n/2 \) times
MAJORITY ELEMENT

• Stream has element occurring $> n/2$ times

• Find it!
STREAMING ALGORITHM

• count ← 0; m ← ⊥
Streaming Algorithm

• count ← 0; m ← ⊥

• For each element x_i of Stream:
STREAMING ALGORITHM

• \(\text{count} \leftarrow 0; \ m \leftarrow \bot \)

• For each element \(x_i \) of Stream:
 • If \(\text{count} = 0 \), then \(m \leftarrow x_i \) and \(\text{count} \leftarrow 1 \)
Streaming Algorithm

- \(\text{count} \leftarrow 0; \ m \leftarrow \bot \)

- For each element \(x_i \) of Stream:
 - If \(\text{count} = 0 \), then \(m \leftarrow x_i \) and \(\text{count} \leftarrow 1 \)
 - Elself \(x_i = m \), then \(\text{count} \leftarrow \text{count} + \)
Streaming Algorithm

- \(\text{count} \leftarrow 0; \ m \leftarrow \perp \)

- For each element \(x_i \) of Stream:
 - If \(\text{count} = 0 \), then \(m \leftarrow x_i \) and \(\text{count} \leftarrow 1 \)
 - ElseIf \(x_i = m \), then \(\text{count} \leftarrow + + \)
 - Else \(\text{count} \leftarrow -- \)
 - Return \(m \)
Streaming Algorithm

- \(\text{count} \leftarrow 0; \ m \leftarrow \bot \)

- For each element \(x_i \) of Stream:
 - If \(\text{count} = 0 \), then \(m \leftarrow x_i \) and \(\text{count} \leftarrow 1 \)
 - ElseIf \(x_i = m \), then \(\text{count}++ \)
 - Else \(\text{count}-- \)

- Return \(m \)
Example
PROOF
ANOTHER VIEW
MISRA-GRIES ALGORITHM

\begin{itemize}
\item \text{count}_1, \ldots, \text{count}_k \leftarrow 0
\item m_1, \ldots, m_k \leftarrow \perp
\end{itemize}

For each element \(x_i \) of Stream:

\begin{itemize}
\item If \(x_i = m_j \), then \(\text{count}_j \)++
\item Else \(\text{Let} \ \text{count}_j \text{be min in} \ \text{count}_1, \ldots, \text{count}_k \)
\item If \(\text{count}_j = 0 \), then \(m_j = x_i \); \(\text{count}_j = 1 \)
\item Else \(\text{count}_1 --, \ldots, \text{count}_k -- \)
\end{itemize}

Return \(m_1, \ldots, m_k \).
MISRA-GRIES ALGORITHM

• count\(_1\), \ldots, count\(_k\) ← 0; m\(_1\), \ldots, m\(_k\) ← \bot

• For each element \(x_i\) of Stream:
 • If \(x_i = m_j\), then count\(_j\) ++
 • Else
 • Let count\(_j\) be min in count\(_1\), \ldots, count\(_k\)
 • If count\(_j\) = 0, then m\(_j\) = x_i; count\(_j\) = 1
 • Else count\(_1\) --, \ldots, count\(_k\) --

• Return m\(_1\), \ldots, m\(_k\)
Approximate Counting
• Router receives stream of network packages

• Want to count number of packages from IP "1.2.3.4"

• Efficient algorithm?

• Efficient approximate algorithm?
• Router receives stream of network packages

• Want to count number of packages from IP “1.2.3.4”
• Router receives stream of network packages

• Want to count number of packages from IP “1.2.3.4”

• Efficient algorithm?
• Router receives stream of network packages

• Want to count number of packages from IP “1.2.3.4”

• Efficient algorithm?

• Efficient approximate algorithm?
MORRIS ALGORITHM

\[c \leftarrow 0\]

When see next element:

- with probability \(\frac{1}{2}\), increment \(c\)
- with probability \(\frac{1}{2}\), do nothing

Return \(2^{c - 1}\)
MORRIS ALGORITHM

• \(c \leftarrow 0 \)
MORRIS ALGORITHM

• $c \leftarrow 0$

• When see next element:
 • with probability $\frac{1}{2^c}$ increment c
 • with probability $1 - \frac{1}{2^c}$ do nothing
MORRIS ALGORITHM

• $c \leftarrow 0$
• When see next element:
 • with probability $\frac{1}{2^c}$ increment c
 • with probability $1 - \frac{1}{2^c}$ do nothing
• Return $2^c - 1$
ANALYSIS
PROBABILITY OF SUCCESS

• $\mathbb{E}[\text{output}] = n$
PROBABILITY OF SUCCESS

• $\mathbb{E}[\text{output}] = n$

• By Markov’s, $\Pr[\text{output} \geq 2n] \leq 1/2$
Probability of Success

- \(\mathbb{E}[\text{output}] = n \)

- By Markov’s, \(\Pr[\text{output} \geq 2n] \leq 1/2 \)

- Similar inequalities show that \(\Pr[\text{output} \in [n - O(n), n + O(n)] \geq 0.9 \)
Probability of Success

- $\mathbb{E}[\text{output}] = n$

- By Markov’s, $\Pr[\text{output} \geq 2n] \leq 1/2$

- Similar inequalities show that $\Pr[\text{output} \in [n - O(n), n + O(n)]] \geq 0.9$

- Again, repeating Algorithm several times significantly amplifies probability of success
SUMMARY

• One pass through stream may be sufficient
SUMMARY

• One pass through stream may be sufficient

• Use Randomness and Approximation
SUMMARY

- One pass through stream may be sufficient
- Use Randomness and Approximation
- Markov’s inequality: from Expectation to Probability
SUMMARY

• One pass through stream may be sufficient

• Use Randomness and Approximation

• Markov’s inequality: from Expectation to Probability

• Amplify probability by Repetitions