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- Problem takes exponential time solve exactly

- Intelligent exhaustive search: finding optimal
solution without going through all candidate
solutions
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RUNNING TIME

running time: n n> n® nl
less than 10%:  10° 10*° 10° 12
running time:  nl 4" 27 1.308"
less than 10%: 12 14 29 77




Traveling Salesman Problem
(TSP)
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ALGORITHMS

- Classical optimization problem with
countless number of real life applications
(see Lecture 1)

- No polynomial time algorithms known

- We'll see exact exponential-time
algorithms
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BRUTE FORCE SOLUTION

A naive algorithm just checks all possible ~ n!
cycles.
We'll see
- Use dynamic programming to solve TSP in
O(n?-2M)
- Therunningtime is exponential, butis much
better than n!



DYNAMIC PROGRAMMING

- Dynamic programming is one of the most
powerful algorithmic techniques



DYNAMIC PROGRAMMING

- Dynamic programming is one of the most
powerful algorithmic techniques

- Rough idea: express a solution for

a problem through solutions for smaller
subproblems



DYNAMIC PROGRAMMING

- Dynamic programming is one of the most
powerful algorithmic techniques

- Rough idea: express a solution for

a problem through solutions for smaller
subproblems

- Solve subproblems one by one. Store
solutions to subproblems in a table to
avoid recomputing the same thing again
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containing the vertex 1and a vertex | € S,
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SUBPROBLEMS

- For a subset of vertices S C {1,...,n}
containing the vertex 1and a vertex | € S,
let C(S, 1) be the length of the shortest path
that starts at 1, ends at 1 and visits all
vertices from S exactly once

- C({1},1) =0and C(S,1) = 400 when |S] > 1
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RECURRENCE RELATION

- Consider the second-to-last vertex j on the
required shortest path from 1to I visiting
all vertices from S

- The subpath from 1toj is the shortest one
visiting all vertices from S — {i} exactly once
- Hence

C(S, 1) = min{C(S — {i},)) + d;i}, where the
minimum is over all j € S such thatj # i
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ORDER OF SUBPROBLEMS

- Need to process all subsets S C {1,...,n}
in an order that guarantees that when
computing the value of C(S, 1), the values of
C(S —{i},)) have already been computed

- For example, we can process subsets in
order of increasing size
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ALGORITHM

C(x, *) « +o00
C({1},1) «0
for s from 2 to n:
forall1e SC{1,...,n} of size s:
forallies, i #1:
foralljes,j#i
C(S,1) < min{C(S,1),C(S — {i},)) + d;i}

return min{C({1,...,n},i) + di1}



Satisfiability Problem (SAT)
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(X1 VX \/X3)/\(X1 \/_\Xz)/\(_‘X'| \/X3)/\(X2\/_|X3)/\(_|X1 \/_|X2\/_|X3)
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R-SAT

O(Xq, - Xn) =(X1 VX V...V X)) A
.. A
(Xz\/—|X3\/...\/X8)

¢ Is satisfiable if

Ix € {0,1}": p(x) =1.
Otherwise, ¢ is unsatisfiable
n Boolean vars, m clauses

k-SAT Is SAT where clause length <k
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R-SAT. EXAMPLES

(X1 VX VX3) A (X1 V=x2) A (=X V X3) A (Xa V —x3)

(x1) A (mx2) A (X6) A (—x1)
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SAT IN 2"

- O*() suppresses polynomial factors in the
input length:

2!’1 n10m2 — O*(2n)

- SAT can be solved in time O*(2")

- We don't know how to solve SAT exponentially
faster: in time O0*(1.999")



3-SAT

. (Xq\/Xz \/X9)/\.../\(X2\/—IX3 \/Xg)



3-SAT

(VX VX)) AL A (X VX3V Xg)



3-SAT

= (VO VX )AL A (X VX3V Xs)

- Consider three sub-problems:
- X1 =1

- X1 =0,%x =1

- X1 =0,%=0,Xg =1



3-SAT

= (VO VX )AL A (X VX3V Xs)

- Consider three sub-problems:

- X1 =1

- X1 =0,%x =1

- X1 =0,%=0,Xg =1

- The original formula is SAT Iff at least one of
these formulas is SAT
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3-SAT. ANALYSIS
- T(nN)<T(h—=1)+T(nh—=2)+T(n—23)
- T(n) <1.85":
TN <T(h—1)+T(n—-2)+T(n-3)
< 1.85"" +1.85"2 +1.85"3
1 1 1
= 1.85"
8 (1.85 + 1.852 + 1.853)
< 1.85"(0.991)

< 1.85"

- There are even faster algorithms: 1.308"
[HKZZ19]



How hard can SAT be?
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