GEMS OF TCS

EXPONENTIAL-TIME ALGORITHMS

Sasha Golovnev September 11, 2023

EXACT ALGORITHMS

• We need to solve problem exactly

EXACT ALGORITHMS

- We need to solve problem exactly
- Problem takes exponential time solve exactly

EXACT ALGORITHMS

- We need to solve problem exactly
- Problem takes exponential time solve exactly
- Intelligent exhaustive search: finding optimal solution without going through all candidate solutions

RUNNING TIME

running time:	n	n ²	n ³	n!
less than 10 ⁹ :	10 ⁹	10 ^{4.5}	10 ³	12

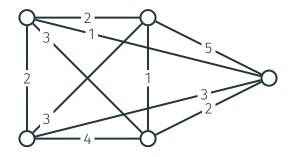
RUNNING TIME

running time:	n	n	2	n ³	n!	
less than 10 ⁹ :	10 ⁹	10	4.5	10 ³	12	
running time:	n!	4 ⁿ	2 ⁿ	1.3	1.308 ⁿ	
less than 10 ⁹ :	12	14	29	7	77	

Traveling Salesman Problem (TSP)

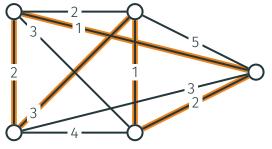
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once



TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once



length: 9

• Classical optimization problem with countless number of real life applications (see Lecture 1)

ALGORITHMS

- Classical optimization problem with countless number of real life applications (see Lecture 1)
- No polynomial time algorithms known

ALGORITHMS

- Classical optimization problem with countless number of real life applications (see Lecture 1)
- No polynomial time algorithms known
- We'll see exact exponential-time algorithms

BRUTE FORCE SOLUTION

A naive algorithm just checks all possible $\sim n!$ cycles.

BRUTE FORCE SOLUTION

A naive algorithm just checks all possible $\sim n!$ cycles.

We'll see

• Use dynamic programming to solve TSP in $O(n^2 \cdot 2^n)$

BRUTE FORCE SOLUTION

A naive algorithm just checks all possible $\sim n!$ cycles.

We'll see

- Use dynamic programming to solve TSP in $O(n^2 \cdot 2^n)$
- The running time is exponential, but is much better than *n*!

DYNAMIC PROGRAMMING

• Dynamic programming is one of the most powerful algorithmic techniques

DYNAMIC PROGRAMMING

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems

DYNAMIC PROGRAMMING

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems
- Solve subproblems one by one. Store solutions to subproblems in a table to avoid recomputing the same thing again

SUBPROBLEMS

• For a subset of vertices $S \subseteq \{1, ..., n\}$ containing the vertex 1 and a vertex $i \in S$, let C(S, i) be the length of the shortest path that starts at 1, ends at *i* and visits all vertices from *S* exactly once

SUBPROBLEMS

- For a subset of vertices $S \subseteq \{1, ..., n\}$ containing the vertex 1 and a vertex $i \in S$, let C(S, i) be the length of the shortest path that starts at 1, ends at *i* and visits all vertices from *S* exactly once
- $C({1}, 1) = 0$ and $C(S, 1) = +\infty$ when |S| > 1

RECURRENCE RELATION

 Consider the second-to-last vertex *j* on the required shortest path from 1 to *i* visiting all vertices from S

RECURRENCE RELATION

- Consider the second-to-last vertex *j* on the required shortest path from 1 to *i* visiting all vertices from S
- The subpath from 1 to *j* is the shortest one visiting all vertices from S {*i*} exactly once

RECURRENCE RELATION

- Consider the second-to-last vertex *j* on the required shortest path from 1 to *i* visiting all vertices from S
- The subpath from 1 to *j* is the shortest one visiting all vertices from S {*i*} exactly once
- Hence

 $C(S, i) = \min_{j} \{C(S - \{i\}, j) + d_{ji}\}, \text{ where the minimum is over all } j \in S \text{ such that } j \neq i$

ORDER OF SUBPROBLEMS

• Need to process all subsets $S \subseteq \{1, ..., n\}$ in an order that guarantees that when computing the value of C(S, i), the values of $C(S - \{i\}, j)$ have already been computed

Order of Subproblems

- Need to process all subsets $S \subseteq \{1, ..., n\}$ in an order that guarantees that when computing the value of C(S, i), the values of $C(S - \{i\}, j)$ have already been computed
- For example, we can process subsets in order of increasing size

$$C(*,*) \leftarrow +\infty$$
$$C(\{1\},1) \leftarrow 0$$

 $C(*,*) \leftarrow +\infty$ $C(\{1\},1) \leftarrow 0$ for s from 2 to n: for all $1 \in S \subseteq \{1,...,n\}$ of size s:

 $C(*,*) \leftarrow +\infty$ $C(\{1\}, 1) \leftarrow 0$ for s from 2 to *n*: for all $1 \in S \subseteq \{1, \ldots, n\}$ of size s: for all $i \in S$, $i \neq 1$: for all $i \in S$, $i \neq i$ $C(S,i) \leftarrow \min\{C(S,i), C(S-\{i\},j) + d_{ii}\}$

 $C(*,*) \leftarrow +\infty$ $C(\{1\}, 1) \leftarrow 0$ for s from 2 to *n*: for all $1 \in S \subseteq \{1, \ldots, n\}$ of size s: for all $i \in S$, $i \neq 1$: for all $i \in S$, $i \neq i$ $C(S, i) \leftarrow \min\{C(S, i), C(S - \{i\}, j) + d_{ii}\}$ return $\min_{i} \{ C(\{1, ..., n\}, i) + d_{i,1} \}$

Satisfiability Problem (SAT)

SAT

$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$

SAT

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$$

 $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$

$$\phi(x_1,\ldots,x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \\ \ldots \land \\ (x_2 \lor \neg x_3 \lor \ldots \lor x_8)$$

$$\phi(x_1,\ldots,x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \\ \vdots \\ (x_2 \lor \neg x_3 \lor \ldots \lor x_8)$$

 ϕ is satisfiable if $\exists x \in \{0,1\}^n : \phi(x) = 1$. Otherwise, ϕ is unsatisfiable

$$\phi(x_1,\ldots,x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \\ \ldots \land \\ (x_2 \lor \neg x_3 \lor \ldots \lor x_8)$$

 ϕ is satisfiable if $\exists x \in \{0,1\}^n : \phi(x) = 1$. Otherwise, ϕ is unsatisfiable *n* Boolean vars, *m* clauses

$$\phi(x_1,\ldots,x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \\ \ldots \land \\ (x_2 \lor \neg x_3 \lor \ldots \lor x_8)$$

 ϕ is satisfiable if

$$\exists x \in \{0,1\}^n \colon \phi(x) = 1 \; .$$

Otherwise, ϕ is unsatisfiable

n Boolean vars, m clauses

k-SAT is SAT where clause length ≤k

k-SAT. EXAMPLES

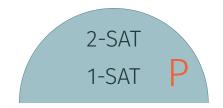
$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$

k-SAT. EXAMPLES

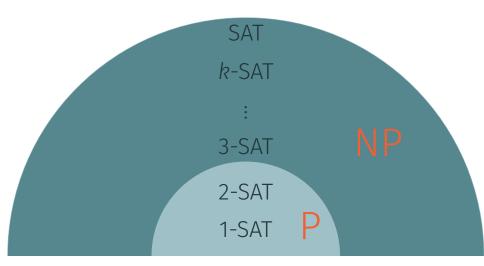
$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$

$$(X_1) \wedge (\neg X_2) \wedge (X_3) \wedge (\neg X_1)$$

COMPLEXITY OF SAT



COMPLEXITY OF SAT



But how hard is SAT?

SAT IN 2^{*n*}

• $O^*(\cdot)$ suppresses polynomial factors in the input length:

$$2^n n^{10} m^2 = O^*(2^n)$$

SAT IN 2^{*n*}

• $O^*(\cdot)$ suppresses polynomial factors in the input length:

$$2^n n^{10} m^2 = O^*(2^n)$$

• SAT can be solved in time $O^*(2^n)$

SAT IN 2^{*n*}

• $O^*(\cdot)$ suppresses polynomial factors in the input length:

$$2^n n^{10} m^2 = O^*(2^n)$$

- SAT can be solved in time $O^*(2^n)$
- We don't know how to solve SAT exponentially faster: in time O*(1.999ⁿ)

• $(X_1 \lor X_2 \lor X_9) \land \ldots \land (X_2 \lor \neg X_3 \lor X_8)$

• $(X_1 \lor X_2 \lor X_9) \land \ldots \land (X_2 \lor \neg X_3 \lor X_8)$

- $(X_1 \lor X_2 \lor X_9) \land \ldots \land (X_2 \lor \neg X_3 \lor X_8)$
- Consider three sub-problems:

•
$$x_1 = 1$$

$$\cdot x_1 = 0, x_2 = 1$$

•
$$x_1 = 0, x_2 = 0, x_9 = 1$$

- $(x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)$
- Consider three sub-problems:

•
$$x_1 = 1$$

•
$$x_1 = 0, x_2 = 1$$

•
$$x_1 = 0, x_2 = 0, x_9 = 1$$

• The original formula is SAT iff at least one of these formulas is SAT

• $T(n) \leq T(n-1) + T(n-2) + T(n-3)$

- $T(n) \leq T(n-1) + T(n-2) + T(n-3)$
- $T(n) \leq 1.85^n$:

- $T(n) \le T(n-1) + T(n-2) + T(n-3)$ • $T(n) < 1.85^n$:
 - $T(n) \le T(n-1) + T(n-2) + T(n-3)$ $\le 1.85^{n-1} + 1.85^{n-2} + 1.85^{n-3}$ $= 1.85^{n} \left(\frac{1}{1.85} + \frac{1}{1.85^{2}} + \frac{1}{1.85^{3}}\right)$ $< 1.85^{n} (0.991)$ $< 1.85^{n}$

- $T(n) \le T(n-1) + T(n-2) + T(n-3)$
- $T(n) \leq 1.85^n$:

$$T(n) \leq T(n-1) + T(n-2) + T(n-3)$$

$$\leq 1.85^{n-1} + 1.85^{n-2} + 1.85^{n-3}$$

$$= 1.85^{n} \left(\frac{1}{1.85} + \frac{1}{1.85^{2}} + \frac{1}{1.85^{3}}\right)$$

$$< 1.85^{n} (0.991)$$

$$< 1.85^{n}$$

• There are even faster algorithms: 1.308^{*n*} [HKZZ19]

How hard can SAT be?

Algorithmic Complexity of SAT



Algorithmic Complexity of SAT

3-SAT **1.308**^{*n*} 2-SAT O(m) 1-SAT O(m)

ALGORITHMIC COMPLEXITY OF SAT

k-SAT $2^{n(1-O(1/k))}$: 3-SAT 1.308ⁿ 2-SAT O(m) 1-SAT O(m)

ALGORITHMIC COMPLEXITY OF SAT

