GEMS OF TCS

EXPONENTIAL-TIME ALGORITHMS

Sasha Golovnev
September 11, 2023
Exact Algorithms

• We need to solve problem exactly
EXACT ALGORITHMS

• We need to solve problem exactly

• Problem takes exponential time solve exactly
Exact Algorithms

- We need to solve problem exactly
- Problem takes exponential time solve exactly
- Intelligent exhaustive search: finding optimal solution without going through all candidate solutions
<table>
<thead>
<tr>
<th>running time:</th>
<th>n</th>
<th>n^2</th>
<th>n^3</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 10^9:</td>
<td>10^9</td>
<td>$10^{4.5}$</td>
<td>10^3</td>
<td>12</td>
</tr>
</tbody>
</table>
Running Time

<table>
<thead>
<tr>
<th>running time:</th>
<th>n</th>
<th>n^2</th>
<th>n^3</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 10^9:</td>
<td>10^9</td>
<td>$10^{4.5}$</td>
<td>10^3</td>
<td>12</td>
</tr>
<tr>
<td>running time:</td>
<td>$n!$</td>
<td>4^n</td>
<td>2^n</td>
<td>1.308^n</td>
</tr>
<tr>
<td>less than 10^9:</td>
<td>12</td>
<td>14</td>
<td>29</td>
<td>77</td>
</tr>
</tbody>
</table>
Traveling Salesman Problem (TSP)
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.

Graph with edges and numbers indicating weights. The length of the path is 9.
• Classical optimization problem with countless number of real life applications (see Lecture 1)
• Classical optimization problem with countless number of real life applications (see Lecture 1)
• No polynomial time algorithms known
ALGORITHMS

- Classical optimization problem with countless number of real life applications (see Lecture 1)
- No polynomial time algorithms known
- We’ll see exact exponential-time algorithms
A naive algorithm just checks all possible $\sim n!$ cycles.

A naive algorithm just checks all possible \(\sim n! \) cycles.

We’ll see

- Use dynamic programming to solve TSP in \(O(n^2 \cdot 2^n) \)
A naive algorithm just checks all possible $\sim n!$ cycles.

We’ll see

- Use dynamic programming to solve TSP in $O(n^2 \cdot 2^n)$
- The running time is exponential, but is much better than $n!$
Dynamic programming is one of the most powerful algorithmic techniques.

Rough idea: express a solution for a problem through solutions for smaller subproblems.

Solve subproblems one by one. Store solutions to subproblems in a table to avoid recomputing the same thing again.
Dynamic Programming

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems
Dynamic Programming

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems
- Solve subproblems one by one. Store solutions to subproblems in a table to avoid recomputing the same thing again
For a subset of vertices $S \subseteq \{1, \ldots, n\}$ containing the vertex 1 and a vertex $i \in S$, let $C(S, i)$ be the length of the shortest path that starts at 1, ends at i and visits all vertices from S exactly once.
For a subset of vertices $S \subseteq \{1, \ldots, n\}$ containing the vertex 1 and a vertex $i \in S$, let $C(S, i)$ be the length of the shortest path that starts at 1, ends at i and visits all vertices from S exactly once.

- $C(\{1\}, 1) = 0$ and $C(S, 1) = +\infty$ when $|S| > 1$.
Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
• Consider the second-to-last vertex \(j \) on the required shortest path from 1 to \(i \) visiting all vertices from \(S \)
• The subpath from 1 to \(j \) is the shortest one visiting all vertices from \(S \) – \(\{i\} \) exactly once
• Consider the second-to-last vertex \(j \) on the required shortest path from 1 to \(i \) visiting all vertices from \(S \)

• The subpath from 1 to \(j \) is the shortest one visiting all vertices from \(S - \{i\} \) exactly once.

• Hence

\[
C(S, i) = \min_j \{C(S - \{i\}, j) + d_{ji}\}, \text{ where the minimum is over all } j \in S \text{ such that } j \neq i
\]
Need to process all subsets $S \subseteq \{1, \ldots, n\}$ in an order that guarantees that when computing the value of $C(S, i)$, the values of $C(S - \{i\}, j)$ have already been computed.
• Need to process all subsets $S \subseteq \{1, \ldots, n\}$ in an order that guarantees that when computing the value of $C(S, i)$, the values of $C(S - \{i\}, j)$ have already been computed.

• For example, we can process subsets in order of increasing size.
ALGORITHM

\[C(\ast, \ast) \leftarrow +\infty \]

\[C(\{1\}, 1) \leftarrow 0 \]
ALGORITHM

\[C(\ast, \ast) \leftarrow +\infty \]
\[C(\{1\}, 1) \leftarrow 0 \]

for \(s \) from 2 to \(n \):

\[\text{for all } 1 \in S \subseteq \{1, \ldots, n\} \text{ of size } s: \]
Algorithm

\[C(\ast, \ast) \leftarrow +\infty \]
\[C(\{1\}, 1) \leftarrow 0 \]

for s from 2 to n:

for all \(1 \in S \subseteq \{1, \ldots, n\}\) of size s:

for all \(i \in S, i \neq 1\):

for all \(j \in S, j \neq i\)

\[C(S, i) \leftarrow \min\{C(S, i), C(S - \{i\}, j) + d_{ji}\} \]
Algorithm

\[
C(\ast, \ast) \leftarrow +\infty
\]
\[
C(\{1\}, 1) \leftarrow 0
\]

for \(s \) from 2 to \(n \):

for all \(1 \in S \subseteq \{1, \ldots, n\} \) of size \(s \):

for all \(i \in S, i \neq 1 \):

for all \(j \in S, j \neq i \)

\[
C(S, i) \leftarrow \min\{C(S, i), C(S - \{i\}, j) + d_{ji}\}
\]

return \(\min_i\{C(\{1, \ldots, n\}, i) + d_{i,1}\} \)
Satisfiability Problem (SAT)
\((x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)\)
\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)\]
\(k\text{-SAT} \)

\[\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \]
\[\ldots \land \]
\[(x_2 \lor \neg x_3 \lor \ldots \lor x_8) \]

\(\phi \) is satisfiable if \(\exists x \in \{0, 1\}^n : \phi(x) = 1 \).

Otherwise, \(\phi \) is unsatisfiable.
\(k\text{-SAT} \)

\[\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_2 \lor \neg x_3 \lor \ldots \lor x_8) \]

\(\phi \) is satisfiable if

\[\exists x \in \{0, 1\}^n : \phi(x) = 1. \]

Otherwise, \(\phi \) is unsatisfiable
k-SAT

$$\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_2 \lor \neg x_3 \lor \ldots \lor x_8)$$

ϕ is **satisfiable** if

$$\exists x \in \{0,1\}^n : \phi(x) = 1.$$

Otherwise, ϕ is **unsatisfiable**

n Boolean vars, m clauses
k-SAT

$$\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land$$

$$\ldots \land$$

$$(x_2 \lor \neg x_3 \lor \ldots \lor x_8)$$

ϕ is satisfiable if

$$\exists x \in \{0, 1\}^n : \phi(x) = 1 .$$

Otherwise, ϕ is unsatisfiable

n Boolean vars, m clauses

k-SAT is SAT where clause length $\leq k$
k-SAT. Examples

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)\]
\(k\text{-SAT. EXAMPLES} \)

\[
(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)
\]

\[
(x_1) \land (\neg x_2) \land (x_3) \land (\neg x_1)
\]
Complexity of SAT

P

1-SAT

2-SAT

...
COMPLEXITY OF SAT

SAT

k-SAT

3-SAT

2-SAT

1-SAT

NP

P
But how hard is SAT?
SAT IN 2^n

- $O^*(\cdot)$ suppresses polynomial factors in the input length:

$$2^n n^{10} m^2 = O^*(2^n)$$
SAT in 2^n

- $O^*(\cdot)$ suppresses polynomial factors in the input length:

$$2^n n^{10} m^2 = O^*(2^n)$$

- SAT can be solved in time $O^*(2^n)$
SAT in 2^n

- $O^*(\cdot)$ suppresses polynomial factors in the input length:

$$2^n n^{10} m^2 = O^*(2^n)$$

- SAT can be solved in time $O^*(2^n)$

- We don’t know how to solve SAT exponentially faster: in time $O^*(1.999^n)$
3-SAT

- \((x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)\)
3-SAT

- \((x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)\)

Consider three sub-problems:

- \(x_1 = 1, x_2 = 1, x_9 = 1\)
- \(x_1 = 0, x_2 = 1, x_9 = 1\)
- The original formula is SAT iff at least one of these formulas is SAT.
3-SAT

\[
(x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)
\]

Consider three sub-problems:

\[
\begin{align*}
&x_1 = 1 \\
&x_1 = 0, x_2 = 1 \\
&x_1 = 0, x_2 = 0, x_9 = 1
\end{align*}
\]
3-SAT

• \((x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)\)

• Consider three sub-problems:
 • \(x_1 = 1\)
 • \(x_1 = 0, x_2 = 1\)
 • \(x_1 = 0, x_2 = 0, x_9 = 1\)

• The original formula is SAT iff at least one of these formulas is SAT
3-SAT. Analysis

- $T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$
3-SAT. Analysis

- $T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$
- $T(n) \leq 1.85^n$

There are even faster algorithms: 1.308^n [HKZZ19]
3-SAT. Analysis

- $T(n) \leq T(n-1) + T(n-2) + T(n-3)$
- $T(n) \leq 1.85^n$

\[
T(n) \leq T(n-1) + T(n-2) + T(n-3) \\
\leq 1.85^{n-1} + 1.85^{n-2} + 1.85^{n-3} \\
= 1.85^n \left(\frac{1}{1.85} + \frac{1}{1.85^2} + \frac{1}{1.85^3} \right) \\
< 1.85^n (0.991) \\
< 1.85^n
\]
3-SAT. Analysis

• $T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$
• $T(n) \leq 1.85^n$

\[
T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)
\leq 1.85^{n-1} + 1.85^{n-2} + 1.85^{n-3}
\leq 1.85^n(\frac{1}{1.85} + \frac{1}{1.85^2} + \frac{1}{1.85^3})
\leq 1.85^n(0.991)
\leq 1.85^n
\]

• There are even faster algorithms: 1.308^n [HKZZ19]
How hard can SAT be?
Algorithmic Complexity of SAT

- 2-SAT: $O(m)$
- 1-SAT: $O(m)$
Algorithmic Complexity of SAT

1-SAT $O(m)$
2-SAT $O(m)$
3-SAT 1.308^n

2-SAT $O(m)$
3-SAT 1.308^n
Algorithmic Complexity of SAT

\[k\text{-SAT} \quad 2^{n(1-O(1/k))} \]

\[\vdots \]

\[3\text{-SAT} \quad 1.308^n \]

\[2\text{-SAT} \quad O(m) \]

\[1\text{-SAT} \quad O(m) \]
Algorithmic Complexity of SAT

- SAT: 2^n
- k-SAT: $2^n(1-\Theta(1/k))$
- 3-SAT: 1.308^n
- 2-SAT: $O(m)$
- 1-SAT: $O(m)$