GEMS OF TCS

EXPONENTIAL-TIME ALGORITHMS

Sasha Golovnev

February 11, 2021
Exact Algorithms

- We need to solve problem exactly
EXACT ALGORITHMS

- We need to solve problem exactly
- Problem takes exponential time solve exactly
EXACT ALGORITHMS

• We need to solve problem exactly

• Problem takes exponential time solve exactly

• Intelligent exhaustive search: finding optimal solution without going through all candidate solutions
Running Time

<table>
<thead>
<tr>
<th>Running Time</th>
<th>Streaming alg.</th>
<th>Poly-time</th>
<th>Exp-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>running time:</td>
<td>n</td>
<td>n^2</td>
<td>n^3</td>
</tr>
<tr>
<td>less than 10^9:</td>
<td>10^9</td>
<td>$10^{4.5}$</td>
<td>10^3</td>
</tr>
</tbody>
</table>

$30k$
Running Time

<table>
<thead>
<tr>
<th>running time:</th>
<th>n</th>
<th>n^2</th>
<th>n^3</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 10^9:</td>
<td>10^9</td>
<td>$10^{4.5}$</td>
<td>10^3</td>
<td>12</td>
</tr>
</tbody>
</table>

$n! \approx 2^{n \log_2 n}$

Exp-time alg's

<table>
<thead>
<tr>
<th>running time:</th>
<th>$n!$</th>
<th>4^n</th>
<th>2^n</th>
<th>1.308^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 10^9:</td>
<td>12</td>
<td>14</td>
<td>29</td>
<td>77</td>
</tr>
</tbody>
</table>
Traveling Salesman Problem (TSP)
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.

[Graph showing a weighted graph with labeled edges and a cycle highlighted.]

\[\text{length: 9}\]
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.
ALGORITHMS

• Classical optimization problem with countless number of real life applications (see Lecture 1)
ALGORITHMS

• Classical optimization problem with countless number of real life applications (see Lecture 1)
• No polynomial time algorithms known
ALGORITHMS

• Classical optimization problem with countless number of real life applications (see Lecture 1)
• No polynomial time algorithms known
• We’ll see exact exponential-time algorithms
A naive algorithm just checks all possible $\sim n!$ cycles.
Brute Force Solution

A naive algorithm just checks all possible $\sim n!$ cycles.

$$n! \approx 2^{n \log_2 n} = e^{n \ln n}$$

<table>
<thead>
<tr>
<th>We’ll see</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n! \approx n^n$</td>
</tr>
</tbody>
</table>

- Use dynamic programming to solve TSP in $O(n^2 \cdot 2^n) \approx 2^n$
Brute Force Solution

A naive algorithm just checks all possible $\sim n!$ cycles.

We’ll see

- Use dynamic programming to solve TSP in $O(n^2 \cdot 2^n)$
- The running time is exponential, but is much better than $n!$
Dynamic Programming

- Dynamic programming is one of the most powerful algorithmic techniques

1962 still remaining best known for TSP

was invented for TSP
Dynamic Programming

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems
Dynamic Programming

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems
- Solve subproblems one by one. Store solutions to subproblems in a table to avoid recomputing the same thing again
Subproblems

- For a subset of vertices \(\{S\} \subseteq \{1, \ldots, n\} \) containing the vertex 1 and a vertex \(i \in S \), let \(C(S, i) \) be the length of the shortest path that starts at 1, ends at \(i \) and visits all vertices from \(S \) exactly once.
For any set $S \subseteq \{1, \ldots, n\}$
For any vertex $i \in \{1, \ldots, n\}$
\[
C(S, i) = \text{length of shortest path that:}
\]
1. Starts at 1
2. Ends at i
3. Visits every vertex from S exactly once
$C(\{1\}, 1) = 0$

$C(\{1, 2\}, 1) = +\infty$

$C(\{1, 2, 3\}, 1) = +\infty$

$C(\{1, 2, 3\}, 3) = 1 + 7 = 8$

$C(\{1, 2, 3\}, 2) = 10 + 7 = 17$

$C(\{1, 2, 3, 4\}) = \min (\quad C(\{1, 2, 3\}, 3) + 3, \quad C(\{1, 2, 3\}, 2) + 15 \quad)$.
SUBPROBLEMS

• For a subset of vertices $\mathcal{S} \subseteq \{1, \ldots, n\}$ containing the vertex 1 and a vertex $i \in \mathcal{S}$, let $C(\mathcal{S}, i)$ be the length of the shortest path that starts at 1, ends at i and visits all vertices from \mathcal{S} exactly once.

• $C(\{1\}, 1) = 0$ and $C(\mathcal{S}, 1) = +\infty$ when $|\mathcal{S}| > 1$
Recurrence Relation

\[C(S, i) = \min_{j \in S} C(S \setminus \{i\}, j) + d_{ji} \]

- Consider the second-to-last vertex \(j \) on the required shortest path from 1 to \(i \) visiting all vertices from \(S \).
Recurrence Relation

• Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
• The subpath from 1 to j is the shortest one visiting all vertices from $S - \{i\}$ exactly once
Recurrence Relation

• Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
• The subpath from 1 to j is the shortest one visiting all vertices from $S - \{i\}$ exactly once
• Hence
\[
C(S, i) = \min_j \{C(S - \{i\}, j) + d_{ji}\},
\]
where the minimum is over all $j \in S$ such that $j \neq i$
ORDER OF SUBPROBLEMS

\(C(S, i) \)

- Need to process all subsets \(S \subseteq \{1, \ldots, n\} \) in an order that guarantees that when computing the value of \(C(S, i) \), the values of \(C(S - \{i\}, j) \) have already been computed.
ORDER OF SUBPROBLEMS

- Need to process all subsets $S \subseteq \{1, \ldots, n\}$ in an order that guarantees that when computing the value of $C(S, i)$, the values of $C(S - \{i\}, j)$ have already been computed.
- For example, we can process subsets in order of increasing size.
ALGORITHM

\S, i

\[C(*, *) \leftarrow +\infty \]

\[C(\{1\}, 1) \leftarrow 0 \]
ALGORITHM

\[
C(\ast, \ast) \leftarrow +\infty \\
C(\{1\}, 1) \leftarrow 0 \\
\text{for } s \text{ from } 2 \text{ to } n: \\
\quad \text{for all } 1 \in S \subseteq \{1, \ldots, n\} \text{ of size } s:
\]

size of \(S\): \(s = 151\)
ALGORITHM

\[C(\ast, \ast) \leftarrow +\infty \]

\[C(\{1\}, 1) \leftarrow 0 \]

for s from 2 to n:

for all \(1 \in S \subseteq \{1, \ldots, n\} \) of size s:

for all \(i \in S, i \neq 1 \):

for all \(j \in S, j \neq i \)

\[
C(S, \ast) - \text{always set } +1 \\
C(S, i) \leftarrow \min\{C(S, i), C(S - \{i\}, j) + d_{ji}\}
\]

the last vertex of path second-to-last

\[C(S - \{i,j\}, j) \]

always set +1
length of cycle = C(\ell_1, \ldots, \ell_3, i) + d_{i,1}

length of shortest cycle =

= \min C(\ell_1, \ldots, \ell_3, i) + d_{i,1}
ALGORITHM

\[C(*, *) \leftarrow +\infty \]
\[C(\{1\}, 1) \leftarrow 0 \]

for s from 2 to n:
 for all \(1 \in S \subseteq \{1, \ldots, n\}\) of size s:
 \(2^n\)
 for all \(i \in S, i \neq 1\):
 \(2^n\)
 for all \(j \in S, j \neq i\):
 \(2^n\)
 \[C(S, i) \leftarrow \min\{C(S, i), C(S - \{i\}, j) + d_{ji}\} \]

return \(\min_i\{C(\{1, \ldots, n\}, i) + d_{i, 1}\}\)

\(\approx 2^n\)

Run-time \(\leq 2^n \cdot n^3\)
Satisfiability Problem (SAT)
SAT

\[n \text{ vars} \]
\[x_i \in \{0, 1\} \]
\[x_1 = x_2 = x_3 = 1 \]
\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \]
\[1 \quad 1 \quad 1 \quad 1 \]
\[\text{SAT} \]

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \]

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \]

\[\text{UNSAT} \]
k-SAT

\[
\phi(x_1, \ldots, x_n) = \left(x_1 \lor \neg x_2 \lor \ldots \lor x_k \right) \land \\
\ldots \land \\
\left(x_2 \lor \neg x_3 \lor \ldots \lor x_8 \right)
\]
k-SAT

$$
\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \\
\ldots \land \\
(x_2 \lor \neg x_3 \lor \ldots \lor x_8)
$$

ϕ is **satisfiable** if

$$
\exists x \in \{0, 1\}^n : \phi(x) = 1.
$$

Otherwise, ϕ is **unsatisfiable**
k-SAT

\[\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \\
\ldots \\
(x_2 \lor \neg x_3 \lor \ldots \lor x_8) \]

\(\phi \) is satisfiable if

\[\exists x \in \{0, 1\}^n : \phi(x) = 1. \]

Otherwise, \(\phi \) is unsatisfiable

\(n \) Boolean vars, \(m \) clauses
\(k\)-SAT

\[
\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \\
\ldots \land \\
(x_2 \lor \neg x_3 \lor \ldots \lor x_8)
\]

\(\phi \) is satisfiable if

\[
\exists x \in \{0, 1\}^n : \phi(x) = 1.
\]

Otherwise, \(\phi \) is unsatisfiable

\(n \) Boolean vars, \(m \) clauses

\(k\)-SAT is SAT where clause length \(\leq k \)
\(k \)-SAT. EXAMPLES

\[3 \text{-SAT} \]

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \]
k-SAT. EXAMPLES

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$$

1-SAT

$$(x_1) \land (\neg x_2) \land (x_3) \land (\neg x_1)$$
COMPLEXITY OF SAT
Complexity of SAT

SAT

κ-SAT
5-SAT
4-SAT
3-SAT

NP

2-SAT
1-SAT

P
But how hard is SAT?
SAT IN 2^n

- $O^*(\cdot)$ suppresses polynomial factors in the input length:

$$2^n n^{10} m^2 = O^*(2^n)$$
SAT in 2^n

- $O^*(\cdot)$ suppresses polynomial factors in the input length:

$$2^n n^{10} m^2 = O^*(2^n)$$

- SAT can be solved in time $O^*(2^n)$

$x, \ldots, x_n \in \{0, 1\}^n$ — 2^n such assignments

For each assignment, in linear time check assignment satisfies formula
SAT in 2^n

- $O^*(\cdot)$ suppresses polynomial factors in the input length:

\[2^n n^{10} m^2 = O^*(2^n) \]

- SAT can be solved in time $O^*(2^n)$

- We don’t know how to solve SAT exponentially faster: in time $O^*(1.999^n)$

Conjecture: Every alg for SAT takes time $\geq 2^n$
3-SAT

\[(x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8) \]
3-SAT

\[(x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8) \]

Instead of checking \(0,1,3^n\) can check only those that don’t have \(x_1 = x_2 = x_3 = 0\)

\[2^n \cdot \frac{3}{8}\] assignments

Can be extended run-time \((7)^{n/3} \approx 1.92^n\)

Case 1: \(x_1 = 1\)
Case 2: \(x_1 = 0\) \(x_2 = 1\)
Case 3: \(x_1 = 0\) \(x_2 = 0\) \(x_3 = 1\)
3-SAT

- \((x_1 \lor x_2 \lor x_3) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)\)

- Consider three sub-problems:

 Case I:
 \[x_1 = 1\]
 Replace \(x_i \rightarrow 1; \neg x_i \rightarrow 0\) \(3\text{-SAT}(n-1)\)

 Case II:
 \[x_1 = 0, x_2 = 1\]
 Replace \(x_i \rightarrow 0; \neg x_i \rightarrow 1\); \(x_2 \rightarrow 1; \neg x_2 \rightarrow 0\) \(3\text{-SAT}(n-2)\)

 Case III:
 \(x_1 = 0, x_2 = 0, x_9 = 1\)
 \(3\text{-SAT}(n-3)\)
3-SAT

- \((x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)\)

- Consider three sub-problems:
 - \(x_1 = 1\)
 - \(x_1 = 0, x_2 = 1\)
 - \(x_1 = 0, x_2 = 0, x_9 = 1\)
- The original formula is SAT iff at least one of these formulas is SAT
3-SAT *(Formula)*

Pick a clause $(x \lor y \lor z)$

\rightarrow 3-SAT *(formula, x = 1)*

\rightarrow 3-SAT *(formula, x = 0, y = 1)*

\rightarrow 3-SAT *(formula, x = 0, y = 0, z = 1)*

If one of these is TRUE,
Then RETURN TRUE

Else
Then RETURN FALSE

$T(n)$ - Run-time on flags with n variables

$T(n) \leq T(n-1) + T(n-2) + T(n-3)$
3-SAT. Analysis

- \(T(n) \leq T(n - 1) + T(n - 2) + T(n - 3) \)

Claim \(T(n) \leq 1.85^n \)

Prove by induction on \(n \)

- \(T(n-1) \leq 1.85^{n-1} \)
- \(T(n-2) \leq 1.85^{n-2} \)
- \(T(n-3) \leq 1.85^{n-3} \)
3-SAT. Analysis

- \(T(n) \leq T(n - 1) + T(n - 2) + T(n - 3) \)
- \(T(n) \leq 1.85^n \)
3-SAT. Analysis

- $T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$
- $T(n) \leq 1.85^n$:

\[
\begin{align*}
T(n) & \leq T(n - 1) + T(n - 2) + T(n - 3) \\
& \leq 1.85^{n-1} + 1.85^{n-2} + 1.85^{n-3} \\
& = 1.85^n \left(\frac{1}{1.85} + \frac{1}{1.85^2} + \frac{1}{1.85^3} \right) \\
& < 1.85^n (0.991) \\
& < 1.85^n
\end{align*}
\]

A constant, k-SAT in $(2 - \varepsilon_k)^n$ SAT in time 2^n
3-SAT. Analysis

- $T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$
- $T(n) \leq 1.85^n$:

$$T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$$
$$\leq 1.85^{n-1} + 1.85^{n-2} + 1.85^{n-3}$$
$$= 1.85^n \left(\frac{1}{1.85} + \frac{1}{1.85^2} + \frac{1}{1.85^3} \right)$$
$$< 1.85^n \times (0.991)$$
$$< 1.85^n$$

- There are even faster algorithms: 1.308^n
 \[\text{[HKZZ19]}\]
How hard can SAT be?
Algorithmic Complexity of SAT

2-SAT $O(m)$

1-SAT $O(m)$
Algorithmic Complexity of SAT

- 3-SAT: 1.308^n
- 2-SAT: $O(m)$
- 1-SAT: $O(m)$
Algorithmic Complexity of SAT

\[k\text{-SAT } 2^n(1-O(1/k)) \]

\[: \]

\[3\text{-SAT } 1.308^n \]

\[2\text{-SAT } O(m) \]

\[1\text{-SAT } O(m) \]
Algorithmic Complexity of SAT

\begin{align*}
\text{SAT} & \quad 2^n \\
k\text{-SAT} & \quad 2^{n(1-O(1/k))} \\
\vdots & \\
3\text{-SAT} & \quad 1.308^n \\
2\text{-SAT} & \quad O(m) \\
1\text{-SAT} & \quad O(m)
\end{align*}