Gems of TCS

Fine-Grained Complexity

Sasha Golovnev
September 13, 2023

Fine-grained Complexity

- Efficient algorithms for important problems?

Fine-Grained Complexity

- Efficient algorithms for important problems?
- For many of them, we couldn't find better algorithms in decades

Fine-grained Complexity

- Efficient algorithms for important problems?
- For many of them, we couldn't find better algorithms in decades
- Today: Identify reason why we're stuck

Algorithmic Complexity of SAT

Algorithmic Complexity of SAT

$$
\begin{aligned}
& \text { 3-SAT } \\
& \text { 2-SAT O(m) } \\
& \text { 1-SAT O(m) }
\end{aligned}
$$

Algorithmic Complexity of SAT

$$
\begin{aligned}
& \text { k-SAT } \\
& \vdots \\
& \text { 3-SAT } \\
& \text { 2-SAT O(m) } \\
& \text { 1-SAT } O(\mathrm{~m})
\end{aligned}
$$

Algorithmic Complexity of SAT

$$
\begin{aligned}
& \text { SAT } \\
& k \text {-SAT } \\
& \vdots \\
& \text { 3-SAT } \\
& \text { 2-SAT O(m) } \\
& \text { 1-SAT } O(\mathrm{~m})
\end{aligned}
$$

Hardness of SAT

- SAT can be solved in time 2^{n} poly(n)
- We don't know how to solve SAT exponentially faster: in time 1.999n

Hardness of SAT

- SAT can be solved in time 2^{n} poly(n)
- We don't know how to solve SAT exponentially faster: in time 1.999n
- Strong Exponential Time Hypothesis (SETH) SAT requires time 2^{n}

Edit Distance

Edit Distance

Edit Distance

Edit Distance

elephant
relevant

Edit Distance

Edit Distance

elephant
xel $\underset{p}{\downarrow}$ vant

Edit Distance

Edit Distance

Edit Distance

Edit Distance

$$
\begin{aligned}
& \text { elephant } \\
& \text { ATAGTACT } \\
& \text { xel } \underset{p}{\operatorname{eq}} \operatorname{vant} \\
& \text { GATACACT }
\end{aligned}
$$

$$
\widetilde{O}\left(n^{2}\right)
$$

Other Problems

Longest Common Subsequence

Orthogonal
Vectors

Edit Distance

Hamming Clos- All Pairs Max
est Pair
Flow
RNA-Folding

Regular Expression Matching

Graph Diameter Subset Sum

Conjectured Hardness

- A conjecture for each problem?

Conjectured Hardness

- A conjecture for each problem?
- One conjecture to rule them all?

Conjectured Hardness

- A conjecture for each problem?
- One conjecture to rule them all?
- Fine-grained Complexity: Better-than-known algorithms for one problem would imply better-than-known algorithms for other problems

Orthogonal Vectors (OV)

Orthogonal Vectors Problem

- S, T are sets of N vectors from $\{0,1\}^{d}$. Are there $s \in S$ and $t \in T$ such that $s \cdot t=\sum_{i=1}^{d} s_{i} \cdot t_{i}=0$?

Orthogonal Vectors Problem

- S, T are sets of N vectors from $\{0,1\}^{d}$. Are there $s \in S$ and $t \in T$ such that $s \cdot t=\sum_{i=1}^{d} s_{i} \cdot t_{i}=0$?
- Think of $d=\log ^{2} N$

Orthogonal Vectors Problem

- S, T are sets of N vectors from $\{0,1\}^{d}$. Are there $s \in S$ and $t \in T$ such that $s \cdot t=\sum_{i=1}^{d} s_{i} \cdot t_{i}=0$?
- Think of $d=\log ^{2} N$
- Can solve in time $d \cdot N^{2}$

Orthogonal Vectors Problem

- S, T are sets of N vectors from $\{0,1\}^{d}$. Are there $s \in S$ and $t \in T$ such that $s \cdot t=\sum_{i=1}^{d} s_{i} \cdot t_{i}=0$?
- Think of $d=\log ^{2} N$
- Can solve in time $d \cdot N^{2}$
- SETH implies that OV cannot be solved in time $N^{1.99}$

Fine-GRAined Reductions

formula ϕ of SAT

Fine-grained Reductions

formula ϕ of SAT

Algorithm for SAT

Algorithm for

Fine-grained Reductions

Fine-grained Reductions

\[

\]

Fine-grained Reductions

Fine-grained Reductions

ϕ is unsatisfiable

Fine-grained Reductions

ϕ is unsatisfiable

Fine-grained Reductions

SETH \Longrightarrow OV

- Given a SAT formula ϕ, split its n input variables into two sets of size $n / 2$

SETH \Longrightarrow OV

- Given a SAT formula ϕ, split its n input variables into two sets of size n/2
- For each assignment to the first group - a vector in S, for each assignment to the second - a vector in T

SETH \Longrightarrow OV

- Given a SAT formula ϕ, split its n input variables into two sets of size $n / 2$
- For each assignment to the first group - a vector in S, for each assignment to the second - a vector in T
- $N=2^{n / 2}$

SETH \Longrightarrow OV

- For an assignment $x \in\{0,1\}^{n / 2}$, add $s \in\{0,1\}^{m}$ to S :

$$
s_{i}=1 \text { iff } x \text { doesn't satisfy clause } C_{i}
$$

SETH \Longrightarrow OV

- For an assignment $x \in\{0,1\}^{n / 2}$, add $s \in\{0,1\}^{m}$ to S :

$$
s_{i}=1 \text { iff } x \text { doesn't satisfy clause } C_{i}
$$

- ϕ is SAT iff $\exists s \in S, t \in T$:

$$
\forall i \in\{1, \ldots, m\}: \quad s_{i} \cdot t_{i}=0
$$

SETH $\Longrightarrow O V$

- For an assignment $x \in\{0,1\}^{n / 2}$, add $s \in\{0,1\}^{m}$ to S :

$$
s_{i}=1 \text { iff } x \text { doesn't satisfy clause } C_{i}
$$

- ϕ is SAT iff $\exists s \in S, t \in T$:

$$
\forall i \in\{1, \ldots, m\}: \quad s_{i} \cdot t_{i}=0
$$

- An $N^{1.99}$ algorithm for OV gives an algorithm for SAT with run time

$$
N^{1.99}
$$

SETH $\Longrightarrow O V$

- For an assignment $x \in\{0,1\}^{n / 2}$, add $s \in\{0,1\}^{m}$ to S :

$$
s_{i}=1 \text { iff } x \text { doesn't satisfy clause } C_{i}
$$

- ϕ is SAT iff $\exists s \in S, t \in T$:

$$
\forall i \in\{1, \ldots, m\}: \quad s_{i} \cdot t_{i}=0
$$

- An $N^{1.99}$ algorithm for OV gives an algorithm for SAT with run time

$$
N^{1.99}=\left(2^{n / 2}\right)^{1.99}=2^{0.995 n}
$$

The Dominating Set Problem

Dominating Set

- k-Dominating Set: Given $G=(V, E),|V|=n$, find an $S \subseteq V,|S|=k$ such that

$$
\forall v \in V: v \in S \text { or } \exists u \in S:(v, u) \in E
$$

Dominating Set

- k-Dominating Set: Given $G=(V, E),|V|=n$, find an $S \subseteq V,|S|=k$ such that

$$
\forall v \in V: v \in S \text { or } \exists u \in S:(v, u) \in E
$$

- For $k \geq 7$, solvable in n^{k}

Dominating Set

- k-Dominating Set: Given $G=(V, E),|V|=n$, find an $S \subseteq V,|S|=k$ such that

$$
\forall v \in V: v \in S \text { or } \exists u \in S:(v, u) \in E
$$

- For $k \geq 7$, solvable in n^{k}
- SETH implies that k-DS cannot be solved in time $n^{k-0.01}$ for any k

SETH \Longrightarrow DS

Partition vars in k groups:
$\left\{x_{1}, \ldots, x_{n / k}\right\}, \ldots,\left\{x_{n-n / k+1}, \ldots, x_{n}\right\},|D S|=k$

SETH \Longrightarrow DS

Partition vars in k groups:
$\left\{x_{1}, \ldots, x_{n / k}\right\}, \ldots,\left\{x_{n-n / k+1}, \ldots, x_{n}\right\},|\operatorname{DS}|=k$
$2^{n / k}$ vertices

SETH \Longrightarrow DS

Partition vars in k groups:
$\left\{x_{1}, \ldots, x_{n / k}\right\}, \ldots,\left\{x_{n-n / k+1}, \ldots, x_{n}\right\},|\operatorname{DS}|=k$
$2^{n / k}$ vertices

SETH \Longrightarrow DS

Partition vars in k groups:
$\left\{x_{1}, \ldots, x_{n / k}\right\}, \ldots,\left\{x_{n-n / k+1}, \ldots, x_{n}\right\},|\operatorname{DS}|=k$
$2^{n / k}$ vertices

$2^{n / k}$ vertices

$2^{n / k}$ vertices

SETH \Longrightarrow DS

Partition vars in k groups:
$\left\{x_{1}, \ldots, x_{n / k}\right\}, \ldots,\left\{x_{n-n / k+1}, \ldots, x_{n}\right\},|D S|=k$
m vertices:
$2^{n / k}$ vertices

${ }_{2^{n / k}}$ vertices

SETH \Longrightarrow DS

Partition vars in k groups:
$\left\{x_{1}, \ldots, x_{n / k}\right\}, \ldots,\left\{x_{n-n / k+1}, \ldots, x_{n}\right\},|\operatorname{DS}|=k$

SETH \Longrightarrow DS

- For every k, we reduce SAT on n vertices k-DS with

$$
\approx 2^{n / k}
$$

vertices

SETH \Longrightarrow DS

- For every k, we reduce SAT on n vertices k-DS with

$$
\approx 2^{n / k}
$$

vertices

- If k-DS on N vertices can be solved in time $N^{k-0.1}$, then SAT can be solved in time

$$
N^{k-0.1}=2^{(n / k)(k-0.1)}=2^{n-0.1 n / k}
$$

