GEMS OF TCS

FINE-GRAINED COMPLEXITY

Sasha Golovnev September 13, 2023

FINE-GRAINED COMPLEXITY

• Efficient algorithms for important problems?

FINE-GRAINED COMPLEXITY

• Efficient algorithms for important problems?

 For many of them, we couldn't find better algorithms in decades

FINE-GRAINED COMPLEXITY

• Efficient algorithms for important problems?

 For many of them, we couldn't find better algorithms in decades

Today: Identify reason why we're stuck

HARDNESS OF SAT

• SAT can be solved in time $2^n \operatorname{poly}(n)$

 We don't know how to solve SAT exponentially faster: in time 1.999ⁿ

HARDNESS OF SAT

- SAT can be solved in time $2^n \operatorname{poly}(n)$
- We don't know how to solve SAT exponentially faster: in time 1.999ⁿ
- Strong Exponential Time Hypothesis (SETH)

SAT requires time 2ⁿ

Edit Distance

Edit Distance

e l e p h a n t r e l e v a n t

Edit Distance

e l e p h a n t *e l e v a n t

Edit Distance

elephant ATAGTACT

*elevant &ATACACT

Edit Distance

elephant ATAGTACT

*elevant &ATACACT

G

 $\widetilde{O}(n^2)$

OTHER PROBLEMS

Longest Com- mon Subse- quence	Orthogonal Vectors	Edit Distance
Hamming Clos- est Pair	All Pairs Max Flow	RNA-Folding
Regular Expression Matching	Graph Diameter	Subset Sum

CONJECTURED HARDNESS

• A conjecture for each problem?

CONJECTURED HARDNESS

• A conjecture for each problem?

One conjecture to rule them all?

CONJECTURED HARDNESS

- A conjecture for each problem?
- · One conjecture to rule them all?
- Fine-grained Complexity: Better-than-known algorithms for one problem would imply better-than-known algorithms for other problems

Orthogonal Vectors (OV)

• S, T are sets of N vectors from $\{0,1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?

- S, T are sets of N vectors from $\{0,1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?
- Think of $d = \log^2 N$

- S, T are sets of N vectors from $\{0,1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?
- Think of $d = \log^2 N$
- Can solve in time $d \cdot N^2$

- S, T are sets of N vectors from $\{0,1\}^d$. Are there $s \in S$ and $t \in T$ such that $s \cdot t = \sum_{i=1}^d s_i \cdot t_i = 0$?
- Think of $d = \log^2 N$
- Can solve in time $d \cdot N^2$
- SETH implies that OV cannot be solved in time N^{1.99}

formula ϕ of SAT

Algorithm for SAT Algorithm for OV

formula ϕ of SAT

 ϕ is unsatisfiable

 ϕ is unsatisfiable

• Given a SAT formula ϕ , split its n input variables into two sets of size n/2

- Given a SAT formula ϕ , split its n input variables into two sets of size n/2
- For each assignment to the first group a vector in S, for each assignment to the second — a vector in T

- Given a SAT formula ϕ , split its n input variables into two sets of size n/2
- For each assignment to the first group a vector in S, for each assignment to the second — a vector in T
- $N = 2^{n/2}$

• For an assignment $x \in \{0,1\}^{n/2}$, add $s \in \{0,1\}^m$ to S:

 $s_i = 1$ iff x doesn't satisfy clause C_i

$\mathsf{SETH} \implies \mathsf{OV}$

• For an assignment $x \in \{0,1\}^{n/2}$, add $s \in \{0,1\}^m$ to S:

$$s_i = 1$$
 iff x doesn't satisfy clause C_i

• ϕ is SAT iff $\exists s \in S, t \in T$:

$$\forall i \in \{1,\ldots,m\}: s_i \cdot t_i = 0$$

$SETH \implies OV$

• For an assignment $x \in \{0,1\}^{n/2}$, add $s \in \{0,1\}^m$ to S:

$$s_i = 1$$
 iff x doesn't satisfy clause C_i

• ϕ is SAT iff $\exists s \in S, t \in T$:

$$\forall i \in \{1,\ldots,m\}: s_i \cdot t_i = 0$$

• An N^{1.99} algorithm for OV gives an algorithm for SAT with run time

$$N^{1.99}$$

$SETH \implies OV$

• For an assignment $x \in \{0,1\}^{n/2}$, add $s \in \{0,1\}^m$ to S:

$$s_i = 1$$
 iff x doesn't satisfy clause C_i

• ϕ is SAT iff $\exists s \in S, t \in T$:

$$\forall i \in \{1,\ldots,m\}: s_i \cdot t_i = 0$$

• An N^{1.99} algorithm for OV gives an algorithm for SAT with run time

$$N^{1.99} = (2^{n/2})^{1.99} = 2^{0.995n}$$

The Dominating Set Problem

DOMINATING SET

• k-Dominating Set: Given G = (V, E), |V| = n, find an $S \subseteq V, |S| = k$ such that

 $\forall v \in V : v \in S \text{ or } \exists u \in S : (v, u) \in E$

DOMINATING SET

• k-Dominating Set: Given G = (V, E), |V| = n, find an $S \subseteq V, |S| = k$ such that

$$\forall v \in V : v \in S \text{ or } \exists u \in S : (v, u) \in E$$

• For $k \ge 7$, solvable in n^k

DOMINATING SET

• k-Dominating Set: Given G = (V, E), |V| = n, find an $S \subseteq V, |S| = k$ such that

$$\forall v \in V : v \in S \text{ or } \exists u \in S : (v, u) \in E$$

- For $k \ge 7$, solvable in n^k
- SETH implies that k-DS cannot be solved in time $n^{k-0.01}$ for any k

$$\{x_1, \dots, x_{n/k}\}, \dots, \{x_{n-n/k+1}, \dots, x_n\}, |\mathsf{DS}| = k$$

Partition vars in *k* groups:

$$\{x_1, \dots, x_{n/k}\}, \dots, \{x_{n-n/k+1}, \dots, x_n\}, |\mathsf{DS}| = k$$

 $2^{n/k}$ vertices

Partition vars in k groups:

$$\{x_1,\ldots,x_{n/k}\},\ldots,\{x_{n-n/k+1},\ldots,x_n\},|\mathsf{DS}|=k$$

 $2^{n/k}$ vertices

$$\{x_1,\ldots,x_{n/k}\},\ldots,\{x_{n-n/k+1},\ldots,x_n\},|\mathsf{DS}|=k$$

$$\{x_1,\ldots,x_{n/k}\},\ldots,\{x_{n-n/k+1},\ldots,x_n\},|\mathsf{DS}|=k$$

$$\{x_1,\ldots,x_{n/k}\},\ldots,\{x_{n-n/k+1},\ldots,x_n\},|\mathsf{DS}|=k$$

For every k, we reduce SAT on n vertices k-DS with

$$\approx 2^{n/k}$$

vertices

$SETH \Longrightarrow DS$

For every k, we reduce SAT on n vertices k-DS with

$$\approx 2^{n/k}$$

vertices

• If k-DS on N vertices can be solved in time $N^{k-0.1}$, then SAT can be solved in time

$$N^{k-0.1} = 2^{(n/k)(k-0.1)} = 2^{n-0.1n/k}$$