
GEMS OF TCS
GRAPH COLORING ALGORITHMS

Sasha Golovnev
September 18, 2023



PREVIOUSLY...

• Exact Algorithms

• Randomized Algorithms

• Approximate Algorithms

• Today: More examples



PREVIOUSLY...

• Exact Algorithms

• Randomized Algorithms

• Approximate Algorithms

• Today: More examples



Map Coloring



SOUTH AMERICA



THE LAND OF OZ



SWISS CANTONS



FOUR COLOR THEOREM
Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

• Proved using a computer.
• Computer checked almost 2000 graphs.
• Robertson, Sanders, Seymour, and Thomas
gave a much simpler proof in 1997 (still
using a computer search).

Theorem [Weak Version]

Every map can be colored with 6 colors.



FOUR COLOR THEOREM
Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

• Proved using a computer.

• Computer checked almost 2000 graphs.
• Robertson, Sanders, Seymour, and Thomas
gave a much simpler proof in 1997 (still
using a computer search).

Theorem [Weak Version]

Every map can be colored with 6 colors.



FOUR COLOR THEOREM
Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

• Proved using a computer.
• Computer checked almost 2000 graphs.

• Robertson, Sanders, Seymour, and Thomas
gave a much simpler proof in 1997 (still
using a computer search).

Theorem [Weak Version]

Every map can be colored with 6 colors.



FOUR COLOR THEOREM
Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

• Proved using a computer.
• Computer checked almost 2000 graphs.
• Robertson, Sanders, Seymour, and Thomas
gave a much simpler proof in 1997 (still
using a computer search).

Theorem [Weak Version]

Every map can be colored with 6 colors.



FOUR COLOR THEOREM
Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

• Proved using a computer.
• Computer checked almost 2000 graphs.
• Robertson, Sanders, Seymour, and Thomas
gave a much simpler proof in 1997 (still
using a computer search).

Theorem [Weak Version]

Every map can be colored with 6 colors.



SIX COLOR THEOREM
Theorem [Weak Version]

Every map can be colored with 6 colors.

• Induction on the number of countries n.

• Base case. n ≤ 6: can color with 6 colors.
• Induction assumption. All maps with k
countries can be colored with 6 colors.

• Induction step. We’ll show that any map
with k+ 1 countries can be colored with 6
colors.



SIX COLOR THEOREM
Theorem [Weak Version]

Every map can be colored with 6 colors.

• Induction on the number of countries n.
• Base case. n ≤ 6: can color with 6 colors.

• Induction assumption. All maps with k
countries can be colored with 6 colors.

• Induction step. We’ll show that any map
with k+ 1 countries can be colored with 6
colors.



SIX COLOR THEOREM
Theorem [Weak Version]

Every map can be colored with 6 colors.

• Induction on the number of countries n.
• Base case. n ≤ 6: can color with 6 colors.
• Induction assumption. All maps with k
countries can be colored with 6 colors.

• Induction step. We’ll show that any map
with k+ 1 countries can be colored with 6
colors.



SIX COLOR THEOREM
Theorem [Weak Version]

Every map can be colored with 6 colors.

• Induction on the number of countries n.
• Base case. n ≤ 6: can color with 6 colors.
• Induction assumption. All maps with k
countries can be colored with 6 colors.

• Induction step. We’ll show that any map
with k+ 1 countries can be colored with 6
colors.



SIX COLOR THEOREM. PROOF
Lemma
Every map contains a country v with at most 5
neighbors.

v

k countries



SIX COLOR THEOREM. PROOF
Lemma
Every map contains a country v with at most 5
neighbors.

v

k countries



SIX COLOR THEOREM. PROOF
Lemma
Every map contains a country v with at most 5
neighbors.

v

k countries



SIX COLOR THEOREM. PROOF
Lemma
Every map contains a country v with at most 5
neighbors.

vv

k countries



Graph Coloring



GRAPH COLORING

• A graph coloring is a coloring of the graph
vertices s.t. no pair of adjacent vertices share
the same color.

• The chromatic number χ(G) of a graph G is the
smallest number of colors needed to color the
graph.



GRAPH COLORING

• A graph coloring is a coloring of the graph
vertices s.t. no pair of adjacent vertices share
the same color.

• The chromatic number χ(G) of a graph G is the
smallest number of colors needed to color the
graph.



CHROMATIC NUMBER

Chromatic
number is 3



CHROMATIC NUMBER

Chromatic
number is 3



CHROMATIC NUMBER

Chromatic
number is 3



CHROMATIC NUMBER

Chromatic
number is 3



CHROMATIC NUMBER

Chromatic
number is 3



COMPLETE GRAPHS

The chromatic number of Kn is n.



PATH GRAPHS

For n > 1, the chromatic number
of Pn is 2.



CYCLE GRAPHS

For even n, the chromatic number
of Cn is 2.



CYCLE GRAPHS

For odd n > 2, the chromatic num-
ber of Cn is 3.



BIPARTITE GRAPHS

The chromatic number of a bipar-
tite graph (with at least 1 edge)
is 2.



Applications



EXAM SCHEDULE
• Each student takes an exam in each of her courses
• All students in one course take the exam together
• One student cannot take two exams per day
• What is the minimum number of days needed for
the exams?



EXAM SCHEDULE
• Each student takes an exam in each of her courses
• All students in one course take the exam together
• One student cannot take two exams per day
• What is the minimum number of days needed for
the exams?

Graphs

Proofs

Combs

Numbers

Project



EXAM SCHEDULE
• Each student takes an exam in each of her courses
• All students in one course take the exam together
• One student cannot take two exams per day
• What is the minimum number of days needed for
the exams?

Graphs

Proofs

Combs

Numbers

Project



EXAM SCHEDULE
• Each student takes an exam in each of her courses
• All students in one course take the exam together
• One student cannot take two exams per day
• What is the minimum number of days needed for
the exams?

Graphs

Proofs

Combs

Numbers

Project



BANDWIDTH ALLOCATION
Different stations are allowed to use the same
frequency if they are far apart. What is an
optimal assignment of frequencies to stations?



BANDWIDTH ALLOCATION
Different stations are allowed to use the same
frequency if they are far apart. What is an
optimal assignment of frequencies to stations?



BANDWIDTH ALLOCATION
Different stations are allowed to use the same
frequency if they are far apart. What is an
optimal assignment of frequencies to stations?



OTHER APPLICATIONS

• Scheduling Problems

• Register Allocation

• Sudoku puzzles

• Taxis scheduling

• …



Exact Algorithm for Coloring



DYNAMIC PROGRAMMING

• Given graph G on n vertices, find
χ(G)—minimum number of colors in a valid
coloring of G

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems



DYNAMIC PROGRAMMING

• Given graph G on n vertices, find
χ(G)—minimum number of colors in a valid
coloring of G

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems



DYNAMIC PROGRAMMING

• Given graph G on n vertices, find
χ(G)—minimum number of colors in a valid
coloring of G

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems



SUBPROBLEMS

• For a subset of vertices S ⊆ {1, . . . ,n}
compute χ(S)—the minimum number of
colors needed to color vertices S

• Consider S. For any subset U ⊆ S, if there
are no edges between vertices from U, we
can color them all in one color, and use
χ(S \ U) to color the rest

χ(S) = min
U without edges

1+ χ(S \ U)



SUBPROBLEMS

• For a subset of vertices S ⊆ {1, . . . ,n}
compute χ(S)—the minimum number of
colors needed to color vertices S

• Consider S. For any subset U ⊆ S, if there
are no edges between vertices from U, we
can color them all in one color, and use
χ(S \ U) to color the rest

χ(S) = min
U without edges

1+ χ(S \ U)



SUBPROBLEMS

• For a subset of vertices S ⊆ {1, . . . ,n}
compute χ(S)—the minimum number of
colors needed to color vertices S

• Consider S. For any subset U ⊆ S, if there
are no edges between vertices from U, we
can color them all in one color, and use
χ(S \ U) to color the rest

χ(S) = min
U without edges

1+ χ(S \ U)



SUBPROBLEMS

• For a subset of vertices S ⊆ {1, . . . ,n}
compute χ(S)—the minimum number of
colors needed to color vertices S

• Consider S. For any subset U ⊆ S, if there
are no edges between vertices from U, we
can color them all in one color, and use
χ(S \ U) to color the rest

χ(S) = min
U without edges

1+ χ(S \ U)



ORDER OF SUBPROBLEMS

• Need to process all subsets S ⊆ {1, . . . ,n}
in order that guarantees that when
computing the value of χ(S), the values of
χ(S \ U) have already been computed

• For example, we can process subsets in
order of increasing size



ORDER OF SUBPROBLEMS

• Need to process all subsets S ⊆ {1, . . . ,n}
in order that guarantees that when
computing the value of χ(S), the values of
χ(S \ U) have already been computed

• For example, we can process subsets in
order of increasing size



ALGORITHM

χ(∅) = 0

for s from 1 to n:

for all S ⊆ {1, . . . ,n} of size s:

for all U ⊆ S, U without edges

χ(S)← min{χ(S), χ(S \ U) + 1}

return χ({1, . . . ,n})



ALGORITHM

χ(∅) = 0

for s from 1 to n:

for all S ⊆ {1, . . . ,n} of size s:

for all U ⊆ S, U without edges

χ(S)← min{χ(S), χ(S \ U) + 1}

return χ({1, . . . ,n})



ALGORITHM

χ(∅) = 0

for s from 1 to n:

for all S ⊆ {1, . . . ,n} of size s:

for all U ⊆ S, U without edges

χ(S)← min{χ(S), χ(S \ U) + 1}

return χ({1, . . . ,n})



ALGORITHM

χ(∅) = 0

for s from 1 to n:

for all S ⊆ {1, . . . ,n} of size s:

for all U ⊆ S, U without edges

χ(S)← min{χ(S), χ(S \ U) + 1}

return χ({1, . . . ,n})



RUNNING TIME

χ(∅) = 0

FOR s FROM 1 TO n:

FOR ALL S ⊆ {1, . . . , n} OF SIZE s:

FOR ALL U ⊆ S, U WITHOUT EDGES

χ(S)← min{χ(S), χ(S \ U) + 1}

RETURN χ({1, . . . , n})



Randomized Algorithm for
3-Coloring



RANDOMIZED ALGORITHM

• Given a 3-colorable graph, find a 3-coloring

• This problem is NP-hard, we’ll give an
exponential-time algorithm



RANDOMIZED ALGORITHM

• Given a 3-colorable graph, find a 3-coloring

• This problem is NP-hard, we’ll give an
exponential-time algorithm



RANDOMIZED ALGORITHM

• Forbid one random color at each vertex

• Solve 2-SAT in polynomial time

• Repeat the algorithm (3/2)n times



RANDOMIZED ALGORITHM

• Forbid one random color at each vertex

• Solve 2-SAT in polynomial time
• Repeat the algorithm (3/2)n times



RANDOMIZED ALGORITHM

• Forbid one random color at each vertex

• Solve 2-SAT in polynomial time

• Repeat the algorithm (3/2)n times



RANDOMIZED ALGORITHM

• Forbid one random color at each vertex

• Solve 2-SAT in polynomial time

• Repeat the algorithm (3/2)n times



Approximate Algorithm for
3-Coloring



APPROXIMATE COLORING

• Given a 3-colorable graph, finding a 3-coloring
is NP-hard

• Given a 3-colorable graph, finding an
n-coloring is trivial

• We’ll see how to find an O(
√
n)-coloring in

polynomial time



APPROXIMATE COLORING

• Given a 3-colorable graph, finding a 3-coloring
is NP-hard

• Given a 3-colorable graph, finding an
n-coloring is trivial

• We’ll see how to find an O(
√
n)-coloring in

polynomial time



APPROXIMATE COLORING

• Given a 3-colorable graph, finding a 3-coloring
is NP-hard

• Given a 3-colorable graph, finding an
n-coloring is trivial

• We’ll see how to find an O(
√
n)-coloring in

polynomial time



GRAPHS OF BOUNDED DEGREE
Greedy Coloring

A graph G where each vertex has degree ≤ ∆

can be colored with ∆+ 1 colors.

v



GRAPHS OF BOUNDED DEGREE
Greedy Coloring

A graph G where each vertex has degree ≤ ∆

can be colored with ∆+ 1 colors.

v



GRAPHS OF BOUNDED DEGREE
Greedy Coloring

A graph G where each vertex has degree ≤ ∆

can be colored with ∆+ 1 colors.

vv



APPROXIMATE ALGORITHM
While there is vertex v ∈ G of degree ≥

√
n:

Color the neighbors of v in 2 new colors,
remove them from the graph

All remaining vertices have degree <
√
n. Color

the rest of the graph using
√
n new colors

v



APPROXIMATE ALGORITHM
While there is vertex v ∈ G of degree ≥

√
n:

Color the neighbors of v in 2 new colors,
remove them from the graph

All remaining vertices have degree <
√
n. Color

the rest of the graph using
√
n new colors

v



APPROXIMATE ALGORITHM
While there is vertex v ∈ G of degree ≥

√
n:

Color the neighbors of v in 2 new colors,
remove them from the graph

All remaining vertices have degree <
√
n. Color

the rest of the graph using
√
n new colors

v



APPROXIMATE ALGORITHM
While there is vertex v ∈ G of degree ≥

√
n:

Color the neighbors of v in 2 new colors,
remove them from the graph

All remaining vertices have degree <
√
n. Color

the rest of the graph using
√
n new colors

v



APPROXIMATE ALGORITHM
While there is vertex v ∈ G of degree ≥

√
n:

Color the neighbors of v in 2 new colors,
remove them from the graph

All remaining vertices have degree <
√
n. Color

the rest of the graph using
√
n new colors

v



ANALYSIS


