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Map Coloring
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FOUR COLOR THEOREM
Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

• Proved using a computer.
• Computer checked almost 2000 graphs.
• Robertson, Sanders, Seymour, and Thomas
gave a much simpler proof in 1997 (still
using a computer search).

Theorem [Weak Version]

Every map can be colored with 6 colors.
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SIX COLOR THEOREM
Theorem [Weak Version]

Every map can be colored with 6 colors.

• Induction on the number of countries n.

• Base case. n ≤ 6: can color with 6 colors.
• Induction assumption. All maps with k
countries can be colored with 6 colors.

• Induction step. We’ll show that any map
with k+ 1 countries can be colored with 6
colors.
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SIX COLOR THEOREM. PROOF
Lemma
Every map contains a country v with at most 5
neighbors.

v

k countries
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GRAPH COLORING

• A graph coloring is a coloring of the graph
vertices s.t. no pair of adjacent vertices share
the same color.

• The chromatic number χ(G) of a graph G is the
smallest number of colors needed to color the
graph.



GRAPH COLORING

• A graph coloring is a coloring of the graph
vertices s.t. no pair of adjacent vertices share
the same color.

• The chromatic number χ(G) of a graph G is the
smallest number of colors needed to color the
graph.



CHROMATIC NUMBER

Chromatic
number is 3



CHROMATIC NUMBER

Chromatic
number is 3



CHROMATIC NUMBER

Chromatic
number is 3



CHROMATIC NUMBER

Chromatic
number is 3



CHROMATIC NUMBER

Chromatic
number is 3



COMPLETE GRAPHS

The chromatic number of Kn is n.



PATH GRAPHS

For n > 1, the chromatic number
of Pn is 2.



CYCLE GRAPHS

For even n, the chromatic number
of Cn is 2.



CYCLE GRAPHS

For odd n > 2, the chromatic num-
ber of Cn is 3.



BIPARTITE GRAPHS

The chromatic number of a bipar-
tite graph (with at least 1 edge)
is 2.



Applications



EXAM SCHEDULE
• Each student takes an exam in each of her courses
• All students in one course take the exam together
• One student cannot take two exams per day
• What is the minimum number of days needed for
the exams?
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BANDWIDTH ALLOCATION
Different stations are allowed to use the same
frequency if they are far apart. What is an
optimal assignment of frequencies to stations?
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OTHER APPLICATIONS

• Scheduling Problems

• Register Allocation

• Sudoku puzzles

• Taxis scheduling

• …



Exact Algorithm for Coloring



DYNAMIC PROGRAMMING

• Given graph G on n vertices, find
χ(G)—minimum number of colors in a valid
coloring of G

• Dynamic programming is one of the most
powerful algorithmic techniques

• Rough idea: express a solution for
a problem through solutions for smaller
subproblems
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SUBPROBLEMS

• For a subset of vertices S ⊆ {1, . . . ,n}
compute χ(S)—the minimum number of
colors needed to color vertices S

• Consider S. For any subset U ⊆ S, if there
are no edges between vertices from U, we
can color them all in one color, and use
χ(S \ U) to color the rest

χ(S) = min
U without edges

1+ χ(S \ U)
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ORDER OF SUBPROBLEMS

• Need to process all subsets S ⊆ {1, . . . ,n}
in order that guarantees that when
computing the value of χ(S), the values of
χ(S \ U) have already been computed

• For example, we can process subsets in
order of increasing size
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ALGORITHM

χ(∅) = 0

for s from 1 to n:

for all S ⊆ {1, . . . ,n} of size s:

for all U ⊆ S, U without edges

χ(S)← min{χ(S), χ(S \ U) + 1}

return χ({1, . . . ,n})
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RUNNING TIME

χ(∅) = 0

FOR s FROM 1 TO n:

FOR ALL S ⊆ {1, . . . , n} OF SIZE s:

FOR ALL U ⊆ S, U WITHOUT EDGES

χ(S)← min{χ(S), χ(S \ U) + 1}

RETURN χ({1, . . . , n})



Randomized Algorithm for
3-Coloring



RANDOMIZED ALGORITHM

• Given a 3-colorable graph, find a 3-coloring

• This problem is NP-hard, we’ll give an
exponential-time algorithm
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RANDOMIZED ALGORITHM

• Forbid one random color at each vertex

• Solve 2-SAT in polynomial time

• Repeat the algorithm (3/2)n times
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Approximate Algorithm for
3-Coloring



APPROXIMATE COLORING

• Given a 3-colorable graph, finding a 3-coloring
is NP-hard

• Given a 3-colorable graph, finding an
n-coloring is trivial

• We’ll see how to find an O(
√
n)-coloring in

polynomial time
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GRAPHS OF BOUNDED DEGREE
Greedy Coloring

A graph G where each vertex has degree ≤ ∆

can be colored with ∆+ 1 colors.
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APPROXIMATE ALGORITHM
While there is vertex v ∈ G of degree ≥

√
n:

Color the neighbors of v in 2 new colors,
remove them from the graph

All remaining vertices have degree <
√
n. Color

the rest of the graph using
√
n new colors

v
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ANALYSIS


