Linear Programming

- Optimization problems: among all solutions satisfying certain constraints find optimal one.
LINEAR PROGRAMMING

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find shortest cycle through all vertices
LINEAR PROGRAMMING

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring
Linear Programming

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring
- Find minimum vertex cover
Linear Programming

- Optimization problems: among all solutions satisfying certain constraints find optimal one
- Find shortest cycle through all vertices
- Find optimal coloring
- Find minimum vertex cover
- Linear programming: class of optimization problems where constraints and optimization criterion are linear functions
Avoiding Scurvy
• Orange costs $1, grapefruit costs $1; we have budget of $2/day
• Orange costs $1, grapefruit costs $1; we have budget of $2/day

• Orange weighs 100gm, grapefruit weighs 200gm, we can carry 300gm
• Orange costs $1, grapefruit costs $1; we have budget of $2/day

• Orange weighs 100gm, grapefruit weighs 200gm, we can carry 300gm

• Orange has 100gm of vitamin C, grapefruit has 150gm of vitamin C, maximize daily vitamin C intake.
AVOIDING SCURVY. PLOT

\[\text{max } 2x + 3y \]

\[x + y \leq 2 \]
\[x + 2y \leq 3 \]
\[x \geq 0 \]
\[y \geq 0 \]
AVOIDING SCURVY. PLOT

\[
\begin{align*}
\text{max } 2x + 3y \\
x + y &\leq 2 \\
x + 2y &\leq 3 \\
x &\geq 0 \\
y &\geq 0
\end{align*}
\]
AVOIDING SCURVY. PLOT

\[
\text{max } 2x + 3y
\]

\[
x + y \leq 2
\]

\[
x + 2y \leq 3
\]

\[
x \geq 0
\]

\[
y \geq 0
\]
AVOIDING SCURVY. PLOT

\[
\text{max } 2x + 3y \\
\text{ } \\
\begin{align*}
x + y & \leq 2 \\
x + 2y & \leq 3 \\
x & \geq 0 \\
y & \geq 0
\end{align*}
\]
AVOIDING SCURVY. PLOT

\[\max 2x + 3y \]
\[x + y \leq 2 \]
\[x + 2y \leq 3 \]
\[x \geq 0 \]
\[y \geq 0 \]
AVOIDING SCURVY. PLOT

\[\text{max} \ 2x + 3y \]
\[x + y \leq 2 \]
\[x + 2y \leq 3 \]
\[x \geq 0 \]
\[y \geq 0 \]
Avoiding Scurvy. Plot

\[
\begin{align*}
\max & \quad 2x + 3y \\
\text{s.t.} & \quad x + y \leq 2 \\
& \quad x + 2y \leq 3 \\
& \quad x \geq 0 \\
& \quad y \geq 0
\end{align*}
\]
AVOIDING SCURVY. PLOT

\[
\begin{align*}
\text{max } 2x + 3y \\
x + y &\leq 2 \\
x + 2y &\leq 3 \\
x &\geq 0 \\
y &\geq 0
\end{align*}
\]
AVOIDING SCURVY. PLOT

\[\text{max} \ 2x + 3y \]
\[x + y \leq 2 \]
\[x + 2y \leq 3 \]
\[x \geq 0 \]
\[y \geq 0 \]
AVOIDING SCURVY. PLOT

\[
\max 2x + 3y
\]

\[
x + y \leq 2
\]

\[
x + 2y \leq 3
\]

\[
x \geq 0
\]

\[
y \geq 0
\]
AVOIDING SCURVY. PLOT

\[
\begin{align*}
\text{max } & 2x + 3y \\
& x + y \leq 2 \\
& x + 2y \leq 3 \\
& x \geq 0 \\
& y \geq 0
\end{align*}
\]
Profit Maximization
PROFIT MAXIMIZATION

• We have 6 machines and 20 workers
PROFIT MAXIMIZATION

- We have 6 machines and 20 workers
- A machine takes two workers to operate
Profit Maximization

- We have 6 machines and 20 workers
- A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour
- We need to produce at most 100 chocolates/hour
- Each chocolate costs $10, each worker gets $40 per hour
Profit Maximization

- We have 6 machines and 20 workers
- A machine takes two workers to operate
- Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour
- We need to produce at most 100 chocolates/hour
PROFIT MAXIMIZATION

• We have 6 machines and 20 workers
• A machine takes two workers to operate
• Each machine produces 20 chocolates/hour, each worker produces 5 chocolates/hour
• We need to produce at most 100 chocolates/hour
• Each chocolate costs $10, each worker gets $40 per hour
TWO WORKERS OPERATE A MACHINE
CHOCOLATE DEMAND
Linear Classifier
LINEAR CLASSIFIER

- Given n_1 spam emails, and n_2 ham emails as points in \mathbb{R}^d
Given n_1 spam emails, and n_2 ham emails as points in \mathbb{R}^d.

Find a linear function $h(a_1, \ldots, a_d)$ s.t.
Linear Classifier

• Given n_1 spam emails, and n_2 ham emails as points in \mathbb{R}^d

• Find a linear function $h(a_1, \ldots, a_d)$ s.t.
 • $h(a_1, \ldots, a_d) < 0$ for all spam emails
 • $h(a_1, \ldots, a_d) > 0$ for all ham emails
Linear Programming
LINEAR PROGRAMMING

• Find real numbers x_1, \ldots, x_n that satisfy linear constraints

\[a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \geq b_1 \]
\[a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \geq b_2 \]
\[\vdots \]
\[a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \geq b_m \]
LINEAR PROGRAMMING

• Find real numbers x_1, \ldots, x_n that satisfy linear constraints

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n & \geq b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n & \geq b_2 \\
 & \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n & \geq b_m
\end{align*}
\]

• So that linear objective is maximized

\[
c_1x_1 + c_2x_2 + \ldots + c_nx_n
\]
EQUIVALENT FORMULATIONS

• Turn minimization problem into maximization problem:

\[
\begin{align*}
\text{min} & \quad c_1 x_1 + c_2 x_2 + \ldots - c_n x_n \\
\text{max} & \quad -c_1 x_1 - c_2 x_2 - \ldots - c_n x_n
\end{align*}
\]
EQUIVALENT FORMULATIONS

- Turn **minimization** problem into **maximization** problem:

 \[
 \begin{align*}
 \text{min} & \quad c_1 x_1 + c_2 x_2 + \ldots - c_n x_n \\
 \text{max} & \quad -c_1 x_1 - c_2 x_2 - \ldots - c_n x_n
 \end{align*}
 \]

- Turn \(\leq \) into \(\geq \):

 \[
 \begin{align*}
 &a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n \leq b_1 \\
 &-a_{11} x_1 - a_{12} x_2 - \ldots - a_{1n} x_n \geq -b_1
 \end{align*}
 \]
• Turn $=$ into \geq:

\[
\begin{align*}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &\geq b_1 \\
-a_{11}x_1 - a_{12}x_2 - \ldots - a_{1n}x_n &\geq -b_1
\end{align*}
\]
Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.
Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

$Ax = \begin{bmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \ldots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 & \ldots & a_{1n}x_n \\ \vdots & \ddots & \vdots \\ a_{m1}x_1 & \ldots & a_{mn}x_n \end{bmatrix} \geq \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$
Input is a matrix $A \in \mathbb{R}^{m \times n}$, and vectors $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$.

$$Ax = \begin{bmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \ldots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 & \ldots & a_{1n}x_n \\ \vdots & \ddots & \vdots \\ a_{m1}x_1 & \ldots & a_{mn}x_n \end{bmatrix} \geq \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

$Ax \geq b$
Matrix Formulation

Input is a matrix \(A \in \mathbb{R}^{m \times n} \), and vectors \(b \in \mathbb{R}^{m} \) and \(c \in \mathbb{R}^{n} \).

\[
Ax = \begin{bmatrix}
 a_{11} & \ldots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \ldots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
= \begin{bmatrix}
 a_{11}x_1 & \ldots & a_{1n}x_n \\
 \vdots & \ddots & \vdots \\
 a_{m1}x_1 & \ldots & a_{mn}x_n
\end{bmatrix}
\geq \begin{bmatrix}
 b_1 \\
 \vdots \\
 b_m
\end{bmatrix}
\]

\(Ax \geq b \)

maximize \(cx = \begin{bmatrix}
 c_1 & \ldots & c_n
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
= c_1x_1 + \ldots c_nx_n \)
HISTORY OF LINEAR PROGRAMMING

• Kantorovich, 1939, started studying Linear Programming
HISTORY OF LINEAR PROGRAMMING

• Kantorovich, 1939, started studying Linear Programming
• Dantzig, 1947, developed Simplex Method for US Air force planning problems
HISTORY OF LINEAR PROGRAMMING

- Kantorovich, 1939, started studying Linear Programming
- Dantzig, 1947, developed Simplex Method for US Air force planning problems
- Koopmans, 1947, showed how to use LP for analysis of economic theories
HISTORY OF LINEAR PROGRAMMING

• Kantorovich, 1939, started studying Linear Programming
• Dantzig, 1947, developed Simplex Method for US Air force planning problems
• Koopmans, 1947, showed how to use LP for analysis of economic theories
• Kantorovich and Koopmans won Nobel Prize in Economics in 1971
HISTORY OF LINEAR PROGRAMMING

• Kantorovich, 1939, started studying Linear Programming
• Dantzig, 1947, developed Simplex Method for US Air force planning problems
• Koopmans, 1947, showed how to use LP for analysis of economic theories
• Kantorovich and Koopmans won Nobel Prize in Economics in 1971
• Dantzig’s algorithm is “One of top 10 algorithms of the 20th century”
<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>A linear function takes its maximum and minimum values on vertices</td>
</tr>
</tbody>
</table>
Simplex Method

Theorem

A linear function takes its maximum and minimum values on vertices

- Start at any vertex
SIMPLEX METHOD

Theorem

A linear function takes its maximum and minimum values on vertices

- Start at any vertex
- While there is an adjacent vertex with higher profit
 - Move to that vertex
• No solutions
CORNER CASES

- No solutions
- Unbounded profit
ALGORITHMS FOR LINEAR PROGRAMMING

• Simplex method
ALGORITHMS FOR LINEAR PROGRAMMING

- Simplex method
- Many professional packages that implement efficient algorithms for LP
ALGORITHMS FOR LINEAR PROGRAMMING

- Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method
ALGORITHMS FOR LINEAR PROGRAMMING

• Simplex method

• Many professional packages that implement efficient algorithms for LP

• Ellipsoid method

• Projective algorithm
ALGORITHMS FOR LINEAR PROGRAMMING

- Simplex method
- Many professional packages that implement efficient algorithms for LP
- Ellipsoid method
- Projective algorithm
- Recent results!
ELLIPSOID METHOD