EVERYTHING IS A BIT STRING

• Input to an algorithm is a string
EVERYTHING IS A BIT STRING

• Input to an algorithm is a string
• Algorithm itself is a string
EVERYTHING IS A BIT STRING

- Input to an algorithm is a string
- Algorithm itself is a string
- Every string is an algorithm

Everything is a Bit String

• Input to an algorithm is a string
• Algorithm itself is a string
• Every string is an algorithm
• Given input, algorithm
Everything is a Bit String

- Input to an algorithm is a string
- Algorithm itself is a string
- Every string is an algorithm
- Given input, algorithm
 - either eventually outputs some value
EVERYTHING IS A BIT STRING

- Input to an algorithm is a string
- Algorithm itself is a string
- Every string is an algorithm

- Given input, algorithm
 - either eventually outputs some value
 - or never halts
Halting Problem
INFINITE LOOPS

```
    i = 0
    while i <= 5:
        print('Infinite loop')
```
INFINITE LOOPS

```python
i = 0
while i <= 5:
    print('Infinite loop')

x = True
while x:
    print('Infinite loop')
```
HALTING PROBLEM

- Function HALT is defined as follows.
Halting Problem

• Function HALT is defined as follows.
 • The first input is algorithm A
 • HALT(A, x) = 1 if A halts on input x
 • HALT(A, x) = 0 if A enters infinite loop on input x
Halting Problem

• Function HALT is defined as follows.
 • The first input is algorithm A
 • The second input is string x
Halting Problem

- Function HALT is defined as follows.
 - The first input is algorithm A
 - The second input is string x
 - $\text{HALT}(A, x) = 1$ if A halts on input x
Function HALT is defined as follows.

- The first input is algorithm \(A \)
- The second input is string \(x \)
- \(\text{HALT}(A, x) = 1 \) if \(A \) halts on input \(x \)
- \(\text{HALT}(A, x) = 0 \) if \(A \) enters infinite loop on input \(x \)
Applications of Halting Problem

- Algorithm for HALT will help to design bug-free soft (and hardware)

- Goldbach's conjecture
- Collatz conjecture
- Twin (cousin/sexy) prime conjecture
- Odd perfect number
APPLICATIONS OF HALTING PROBLEM

• Algorithm for HALT will help to design bug-free soft (and hardware)

• Algorithm for HALT will (eventually) solve many mathematical problems
APPLICATIONS OF HALTING PROBLEM

- Algorithm for HALT will help to design bug-free soft (and hardware)
- Algorithm for HALT will (eventually) solve many mathematical problems
 - Goldbach’s conjecture
APPLICATIONS OF HALTING PROBLEM

• Algorithm for HALT will help to design bug-free soft (and hardware)

• Algorithm for HALT will (eventually) solve many mathematical problems
 • Goldbach’s conjecture
 • Collatz conjecture
APPLICATIONS OF HALTING PROBLEM

• Algorithm for HALT will help to design bug-free soft (and hardware)

• Algorithm for HALT will (eventually) solve many mathematical problems
 • Goldbach’s conjecture
 • Collatz conjecture
 • Twin (cousin/sexy) prime conjecture
APPLICATIONS OF HALTING PROBLEM

• Algorithm for HALT will help to design bug-free soft (and hardware)

• Algorithm for HALT will (eventually) solve many mathematical problems
 • Goldbach’s conjecture
 • Collatz conjecture
 • Twin (cousin/sexy) prime conjecture
 • Odd perfect number
APPLICATIONS OF HALTING PROBLEM

• Algorithm for HALT will help to design bug-free soft (and hardware)

• Algorithm for HALT will (eventually) solve many mathematical problems
 • Goldbach’s conjecture
 • Collatz conjecture
 • Twin (cousin/sexy) prime conjecture
 • Odd perfect number
 • ...
Clearly, every function can be computed given sufficient time.
Except this is not true
HALTING IS UNDECIDABLE
• Easy to solve for one input and one algorithm
Remarks

• Easy to solve for one input and one algorithm

• But impossible to solve for all inputs and algorithms
Remarks

• Easy to solve for one input and one algorithm

• But impossible to solve for all inputs and algorithms

• Result holds for all computational models
Remarks

• Easy to solve for one input and one algorithm

• But impossible to solve for all inputs and algorithms

• Result holds for all computational models

• All non-trivial properties of algorithms are undecidable
Compiler
• Takes

COMPILER

• Takes
COMPILER

• Takes
 • String A describing algorithm
 • String x describing algorithm’s input
• Takes
 • String A describing algorithm
 • String x describing algorithm’s input
• Outputs $A(x)$
COMPILER

• Takes
 • String A describing algorithm
 • String x describing algorithm’s input
• Outputs A(x)

• Compiler itself is an algorithm, too!
Function $A_{\text{diag}}(x)$ is defined as follows:
UNDECIDABLE PROBLEM

• Function $A_{\text{diag}}(x)$ is defined as follows

• If the algorithm x on input x outputs 1, then $A_{\text{diag}}(x) = 0$

• If the algorithm x on input x outputs other value or never halts, then $A_{\text{diag}}(x) = 1$
• Function $A_{\text{diag}}(x)$ is defined as follows

• If the algorithm x on input x outputs 1, then $A_{\text{diag}}(x) = 0$

• If the algorithm x on input x outputs other value or never halts, then $A_{\text{diag}}(x) = 1$
DIAGONALIZATION
REDUCTION FROM DIAG TO HALT

• Assume there exists an algorithm for HALT
Reduction from Diag to HALT

• Assume there exists an algorithm for HALT

• Given input x, we check if the algorithm x halts on x
Reduction from Diag to HALT

• Assume there exists an algorithm for HALT

• Given input x, we check if the algorithm x halts on x

• If it doesn’t halt, output 1
Reduction from Diag to HALT

- Assume there exists an algorithm for HALT

- Given input \(x \), we check if the algorithm \(x \) halts on \(x \)

- If it doesn’t halt, output 1

- If it halts and outputs 1, output 0
REDUCTION FROM DIAG TO HALT

• Assume there exists an algorithm for HALT

• Given input x, we check if the algorithm x halts on x

• If it doesn’t halt, output 1

• If it halts and outputs 1, output 0

• If it halts and outputs something else, output 1