GEMS OF TCS

GÖDEL’S INCOMPLETENESS

Sasha Golovnev
October 12, 2022
Gödel’s Incompleteness Theorem
Axiomatization of Math

• Find a set of simple and obvious axioms
Axiomatization of Math

- Find a set of simple and obvious axioms
- Any proof could be (in principle) traced back to this set of axioms
EUCLID’S AXIOMS

• For any pair of distinct points, there is exactly one line connecting them
Euclid’s Axioms

• For any pair of distinct points, there is exactly one line connecting them
• Any line segment can be extended to an infinite line
Euclid’s Axioms

• For any pair of distinct points, there is exactly one line connecting them
• Any line segment can be extended to an infinite line
• For any pair of distinct points, there is exactly one circle centered at the first and touching the second
Euclid’s Axioms

• For any pair of distinct points, there is exactly one line connecting them
• Any line segment can be extended to an infinite line
• For any pair of distinct points, there is exactly one circle centered at the first and touching the second
• All right angles are equal to one another
EUCLID’S AXIOMS

• For any pair of distinct points, there is exactly one line connecting them
• Any line segment can be extended to an infinite line
• For any pair of distinct points, there is exactly one circle centered at the first and touching the second
• All right angles are equal to one another
• [The Parallel Postulate] Given a line L and a point x, there is exactly one line parallel to L that passes through x
EUCLID’S AXIOMS

• For any pair of distinct points, there is exactly one line connecting them
• Any line segment can be extended to an infinite line
• For any pair of distinct points, there is exactly one circle centered at the first and touching the second
• All right angles are equal to one another
• [The Parallel Postulate] Given a line L and a point x, there is exactly one line parallel to L that passes through x
PEANO ARITHMETIC

• 0 is a natural number
Peano Arithmetic

- 0 is a natural number
- \(\forall x, x = x \)
- If \(x = y \), then \(y = x \)
- If \(x = y \) and \(y = z \), then \(x = z \)
- ...
PEANO ARITHMETIC

- 0 is a natural number
- \(\forall x, x = x \)
- If \(x = y \), then \(y = x \)
- If \(x = y \) and \(y = z \), then \(x = z \)
- ...
- \(\forall x, y, x = y \text{ iff } \text{Next}(x) = \text{Next}(y) \)
- If \(x \) is a natural number, then \(\text{Next}(x) \) is a natural number
- ...
Peano Arithmetic

- 0 is a natural number
- ∀x, x = x
- If x = y, then y = x
- If x = y and y = z, then x = z
- ...
- ∀x, y, x = y iff Next(x) = Next(y)
- If x is a natural number, then Next(x) is a natural number
- ...
- ∀x, y, x + Next(y) = Next(x + y)
Peano Arithmetic

- 0 is a natural number
- \(\forall x, x = x \)
- If \(x = y \), then \(y = x \)
- If \(x = y \) and \(y = z \), then \(x = z \)
- ...
- \(\forall x, y, x = y \) iff \(\text{Next}(x) = \text{Next}(y) \)
- If \(x \) is a natural number, then \(\text{Next}(x) \) is a natural number
- ...
- \(\forall x, y, x + \text{Next}(y) = \text{Next}(x + y) \)
- \(\forall x, y, x \cdot \text{Next}(y) = x \cdot y + x \)
PEANO ARITHMETIC

• 0 is a natural number
• ∀x, x = x
• If x = y, then y = x
• If x = y and y = z, then x = z
• ...
• ∀x, y, x = y iff Next(x) = Next(y)
• If x is a natural number, then Next(x) is a natural number
• ...
• ∀x, y, x + Next(y) = Next(x + y)
• ∀x, y, x · Next(y) = x · y + x
• Induction
Naive Set Theory

- Set
- Membership in a Set
- Empty Set
- Equality
RUSSELL’S PARADOX

The barber is the “one who shaves all those, and those only, who do not shave themselves”. The question is, does the barber shave himself?
Russell’s Paradox

The barber is the "one who shaves all those, and those only, who do not shave themselves". The question is, does the barber shave himself?
PRINCIPIA MATHEMATICA
ZFC
Gödel’s Incompleteness Theorem

Any attempt to axiomatize all of mathematics is guaranteed to fail
• Function HALT is defined as follows.
HALTING PROBLEM

• Function HALT is defined as follows.
 • The first input is algorithm A
 • HALT(A, x) = 1 if A halts on input x
 • HALT(A, x) = 0 if A enters infinite loop on input x

HALT is undecidable (Lecture 13)
Function HALT is defined as follows.

- The first input is algorithm A
- The second input is string x
Function HALT is defined as follows.

- The first input is algorithm A.
- The second input is string x.
- $\text{HALT}(A, x) = 1$ if A halts on input x.
Halting Problem

- Function HALT is defined as follows.
 - The first input is algorithm A
 - The second input is string x
 - $\text{HALT}(A, x) = 1$ if A halts on input x
 - $\text{HALT}(A, x) = 0$ if A enters infinite loop on input x
Halting Problem

- Function HALT is defined as follows.
 - The first input is algorithm A.
 - The second input is string x.
 - $\text{HALT}(A, x) = 1$ if A halts on input x.
 - $\text{HALT}(A, x) = 0$ if A enters infinite loop on input x.
- HALT is undecidable (Lecture 13).