GEMS OF TCS

APPROXIMATION ALGORITHMS

Sasha Golovnev August 31, 2021

Optimal exact solution OPT (ex: shortest TSP cycle)

- Optimal exact solution OPT (ex: shortest TSP cycle)
- OPT is too hard to find (ex: NP-hard)

- Optimal exact solution OPT (ex: shortest TSP cycle)
- OPT is too hard to find (ex: NP-hard)
- A k-approximation algorithm finds a solution
 ≤ k × OPT

- Optimal exact solution OPT (ex: shortest TSP cycle)
- · OPT is too hard to find (ex: NP-hard)
- A k-approximation algorithm finds a solution ≤ k × OPT
- Possibly efficiently! (ex: poly time)

- Optimal exact solution OPT (ex: shortest TSP cycle)
- · OPT is too hard to find (ex: NP-hard)
- A k-approximation algorithm finds a solution $< k \times \mathsf{OPT}$
- Possibly efficiently! (ex: poly time)
- · When do we use approximation algorithms?

MATCHINGS

 A Matching in a graph is a set of edges without common vertices

MATCHINGS

 A Matching in a graph is a set of edges without common vertices

 A Maximal Matching is a matching which cannot be extended to a larger matching

MATCHINGS

- A Matching in a graph is a set of edges without common vertices
- A Maximal Matching is a matching which cannot be extended to a larger matching
- A Maximum Matching is a matching of the largest size

MATCHINGS. EXAMPLES

MATCHINGS. EXAMPLES

MATCHINGS. EXAMPLES

JOB ASSIGNMENT

	Alice	Ben	Chris	Diana
Administrator	+		+	
Programmer		+	+	
Librarian	+	+		
Professor				+

JOB ASSIGNMENT

JOB ASSIGNMENT

ROOM ASSIGNMENT

	R# 1	R# 2	R# 3	R# 4	R# 5	R# 6
Aaron	+	+				
Bianca	+	+	+			
Carol				+	+	
Dana		+	+	+		+
Emma				+	+	
Francis				+	+	

ROOM ASSIGNMENT

Maximal Matching

Can be found in polynomial time by a greedy algorithm

Maximal Matching

Can be found in polynomial time by a greedy algorithm

Maximum Matching

Can be found in polynomial time by the blossom algorithm

Maximal Matching

Can be found in polynomial time by a greedy algorithm

Maximum Matching

Can be found in polynomial time by the blossom algorithm

Minimum Weight Perfect Matching

Can be found in polynomial time by Edmonds' algorithm

ROOM ASSIGNMENT

Vertex Cover

VERTEX COVERS

 A Vertex Cover of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.

VERTEX COVERS

- A Vertex Cover of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.
- A Minimal Vertex Cover is a vertex cover which does not contain other vertex covers.

VERTEX COVERS

- A Vertex Cover of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.
- A Minimal Vertex Cover is a vertex cover which does not contain other vertex covers.
- A Minimum Vertex Cover is a vertex cover of the smallest size.

ANTIVIRUS SYSTEM

ANTIVIRUS SYSTEM

ANTIVIRUS SYSTEM

Minimal Vertex Cover

Can be found in polynomial time by a greedy algorithm

Minimal Vertex Cover

Can be found in polynomial time by a greedy algorithm

Minimum Vertex Cover

Is **NP**-hard. We only know exponential-time algorithms

APPROXIMATION ALGORITHM

• $M \leftarrow \text{maximal matching in } G$

APPROXIMATION ALGORITHM

• $M \leftarrow \text{maximal matching in } G$

return all vertices in M

 $\cdot \ \ C \leftarrow \emptyset$

$$\cdot$$
 $C \leftarrow \emptyset$

• while $E \neq \emptyset$

$$\cdot$$
 $C \leftarrow \emptyset$

- while $E \neq \emptyset$
 - $\{u,v\} \leftarrow$ any edge from E

 $\cdot \ \ C \leftarrow \emptyset$

- while $E \neq \emptyset$
 - $\{u,v\} \leftarrow$ any edge from E
 - · add u, v to C

 \cdot $C \leftarrow \emptyset$

- while $E \neq \emptyset$
 - $\{u,v\} \leftarrow$ any edge from E
 - · add u, v to C
 - · delete from E all edges incident to u or v
- return C

PROOF

Lemma

This algorithm runs in polynomial time and is 2-approximate: it returns a vertex cover that is at most twice larger then a minimum vertex cover.

FINAL REMARKS

 The analysis is tight: there are graphs with matchings twice larger than vertex covers

FINAL REMARKS

• The analysis is tight: there are graphs with matchings twice larger than vertex covers

No 1.99-approximation algorithm is known

http://bit.ly/job-assignment

Vertex covers:

http://bit.ly/antivirus-system

Break

Matchings:

Traveling Salesman

APPROXIMATION

 If P ≠ NP, then there is no k-approximation algorithm for the general version of TSP for any constant k

APPROXIMATION

- If P ≠ NP, then there is no k-approximation algorithm for the general version of TSP for any constant k
- Euclidean TSP: w(u, v) = w(v, u) and $w(u, v) \le w(u, z) + w(z, v)$

APPROXIMATION

- If P ≠ NP, then there is no k-approximation algorithm for the general version of TSP for any constant k
- Euclidean TSP: w(u, v) = w(v, u) and $w(u, v) \le w(u, z) + w(z, v)$
- We will design a 2-approximation algorithm: it quickly finds a cycle that is at most twice longer than an optimal one

• A tree is a connected graph without cycles

- A tree is a connected graph without cycles
- A tree is a connected graph on n vertices with n – 1 edges

- A tree is a connected graph without cycles
- A tree is a connected graph on n vertices with n − 1 edges
- A Spanning Tree of a graph G is a subgraph of G that (i) is a tree and (ii) contains all vertices of G

- A tree is a connected graph without cycles
- A tree is a connected graph on n vertices with n-1 edges
- A Spanning Tree of a graph G is a subgraph of G that (i) is a tree and (ii) contains all vertices of G
- A Minimum Spanning Tree of a weighted graph G is a spanning tree of the smallest weight

MINIMUM SPANNING TREE: EXAMPLES

MINIMUM SPANNING TREE: EXAMPLES

MINIMUM SPANNING TREES

Lemma

Let G be an undirected graph with non-negative edge weights. Then $MST(G) \leq TSP(G)$.

MINIMUM SPANNING TREES

Lemma

Let G be an undirected graph with non-negative edge weights. Then $MST(G) \leq TSP(G)$.

Proof

By removing any edge from an optimum TSP cycle one gets a spanning tree of *G*.

EULERIAN CYCLE

An Eulerian cycle (or path) visits every edge exactly once

EULERIAN CYCLE

An Eulerian cycle (or path) visits every edge exactly once

Criteria

A connected undirected graph contains an Eulerian cycle, if and only if the degree of every node is even

• $T \leftarrow$ minimum spanning tree of G

• $T \leftarrow$ minimum spanning tree of G

• $D \leftarrow T$ with each edge doubled

 \cdot T \leftarrow minimum spanning tree of G

• $D \leftarrow T$ with each edge doubled

find an Eulerian cycle C in D

- $T \leftarrow$ minimum spanning tree of G
- $D \leftarrow T$ with each edge doubled
- find an Eulerian cycle C in D
- return a cycle that visits the nodes in the order of their first appearance in C

0

EXAMPLE

Lemma

The algorithm is 2-approximate.

Lemma

The algorithm is 2-approximate.

Proof

• The total length of the MST $T \leq OPT$

Lemma

The algorithm is 2-approximate.

Proof

- The total length of the MST $T \leq \mathsf{OPT}$
- We start with Eulerian cycle of length 2|T|

Lemma

The algorithm is 2-approximate.

Proof

- The total length of the MST $T < \mathsf{OPT}$
- We start with Eulerian cycle of length 2|T|
- Shortcuts can only decrease the total length

• $T \leftarrow$ minimum spanning tree of G

• $T \leftarrow$ minimum spanning tree of G

 M ← minimum weight perfect matching on odd-degree vertices of T

• $T \leftarrow$ minimum spanning tree of G

 M ← minimum weight perfect matching on odd-degree vertices of T

• find an Eulerian cycle C in $T \cup M$

- $T \leftarrow$ minimum spanning tree of G
- M ← minimum weight perfect matching on odd-degree vertices of T
- find an Eulerian cycle C in $T \cup M$
- return a cycle that visits the nodes in the order of their first appearance in C

Lemma

The algorithm is 3/2-approximate.

Lemma

The algorithm is 3/2-approximate.

Proof

• The total length of the MST $T \leq \mathsf{OPT}$

Lemma

The algorithm is 3/2-approximate.

Proof

- The total length of the MST $T \leq \mathsf{OPT}$
- The weight of the matching $M \leq OPT/2$

Lemma

The algorithm is 3/2-approximate.

Proof

- The total length of the MST $T \leq \mathsf{OPT}$
- The weight of the matching $M \leq OPT/2$
- Shortcuts can only decrease the total length

FINAL REMARKS

• Euclidean TSP can be approximated to within any factor $(1 + \varepsilon)$

FINAL REMARKS

• Euclidean TSP can be approximated to within any factor $(1 + \varepsilon)$

 The currently best known approximation algorithm for TSP with triangle inequality is has approximation factor of 3/2 – 10⁻³⁶ (July 2020)