GEMS OF TCS

APPROXIMATION ALGORITHMS

Sasha Golovnev
August 29, 2022
Approximation Algorithms

- Optimal exact solution OPT (ex: shortest TSP cycle)
APPROXIMATION ALGORITHMS

• Optimal exact solution OPT (ex: shortest TSP cycle)

• OPT is too hard to find (ex: NP-hard)
Approximation Algorithms

- Optimal exact solution \(\text{OPT} \) (ex: shortest TSP cycle)
- \(\text{OPT} \) is too hard to find (ex: \textbf{NP}-hard)
- A \textit{k-approximation} algorithm finds a solution \(\leq k \times \text{OPT} \)
Approximation Algorithms

- Optimal exact solution OPT (ex: shortest TSP cycle)
- OPT is too hard to find (ex: NP-hard)
- A k-approximation algorithm finds a solution $\leq k \times$ OPT
- Possibly efficiently! (ex: poly time)
Approximation Algorithms

- Optimal exact solution OPT (ex: shortest TSP cycle)
- OPT is too hard to find (ex: NP-hard)
- A \(k \)-approximation algorithm finds a solution \(\leq k \times \text{OPT} \)
- Possibly efficiently! (ex: poly time)
- When do we use approximation algorithms?
MATCHINGS

- A **Matching** in a graph is a set of edges without common vertices
Matchings

- A **Matching** in a graph is a set of edges without common vertices.

- A **Maximal Matching** is a matching which cannot be extended to a larger matching.
Matchings

- A *Matching* in a graph is a set of edges without common vertices.

- A *Maximal Matching* is a matching which cannot be extended to a larger matching.

- A *Maximum Matching* is a matching of the largest size.
Matchings. Examples
MATCHINGS. EXAMPLES
MATCHINGS. EXAMPLES
Job Assignment

<table>
<thead>
<tr>
<th></th>
<th>Alice</th>
<th>Ben</th>
<th>Chris</th>
<th>Diana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Programmer</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Librarian</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
JOB ASSIGNMENT

adm

A

prog

B

libr

C

prof

D
JOB ASSIGNMENT

adm -- A
prog -- B
libr -- C
prof -- D
JOB ASSIGNMENT

adm - A
prog - B
libr - C
prof - D
Room Assignment

<table>
<thead>
<tr>
<th></th>
<th>R# 1</th>
<th>R# 2</th>
<th>R# 3</th>
<th>R# 4</th>
<th>R# 5</th>
<th>R# 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaron</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bianca</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dana</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Emma</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Francis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
ROOM ASSIGNMENT

A → 1
B → 2
C → 3
D → 4
E → 5
F → 6
Maximal Matching

Can be found in polynomial time by a greedy algorithm
Algorithms

<table>
<thead>
<tr>
<th>Matching Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal Matching</td>
<td>Can be found in polynomial time by a greedy algorithm</td>
</tr>
<tr>
<td>Maximum Matching</td>
<td>Can be found in polynomial time by the blossom algorithm</td>
</tr>
</tbody>
</table>
Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal Matching</td>
<td>Can be found in polynomial time by a greedy algorithm</td>
</tr>
<tr>
<td>Maximum Matching</td>
<td>Can be found in polynomial time by the blossom algorithm</td>
</tr>
<tr>
<td>Minimum Weight Perfect Matching</td>
<td>Can be found in polynomial time by Edmonds’ algorithm</td>
</tr>
</tbody>
</table>
ROOM ASSIGNMENT

A
B
C
D
E
F

1
2
3
4
5
6
Vertex Cover
Vertex Covers

- A **Vertex Cover** of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.
Vertex Covers

- A **Vertex Cover** of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.
- A **Minimal Vertex Cover** is a vertex cover which does not contain other vertex covers.
Vertex Covers

- A **Vertex Cover** of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.

- A **Minimal Vertex Cover** is a vertex cover which does not contain other vertex covers.

- A **Minimum Vertex Cover** is a vertex cover of the smallest size.
VERTEX COVERS: EXAMPLES
Minimal Vertex Cover

Can be found in polynomial time by a greedy algorithm
Algorithms

<table>
<thead>
<tr>
<th>Minimal Vertex Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be found in polynomial time by a greedy algorithm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum Vertex Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is NP-hard. We only know exponential-time algorithms</td>
</tr>
</tbody>
</table>
APPROXIMATION ALGORITHM

- $M \leftarrow$ maximal matching in G
Approximation Algorithm

- $M \leftarrow$ maximal matching in G

- return all vertices in M
EQUIVALENT ALGORITHM

• $C \leftarrow \emptyset$
EQUVALENT ALGORITHM

• $C \leftarrow \emptyset$

• while $E \neq \emptyset$

Equivalent Algorithm

- $C \leftarrow \emptyset$

- while $E \neq \emptyset$
 - $\{u, v\} \leftarrow$ any edge from E
Equivalent Algorithm

- $C \leftarrow \emptyset$

- while $E \neq \emptyset$
 - $\{u, v\} \leftarrow$ any edge from E
 - add u, v to C
Equivalent Algorithm

- $C \leftarrow \emptyset$

- while $E \neq \emptyset$
 - $\{u, v\} \leftarrow$ any edge from E
 - add u, v to C
 - delete from E all edges incident to u or v
- return C
Proof

<table>
<thead>
<tr>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>This algorithm runs in polynomial time and is 2-approximate: it returns a vertex cover that is at most twice larger than a minimum vertex cover.</td>
</tr>
</tbody>
</table>
Final Remarks

• The analysis is tight: there are graphs with matchings twice larger than vertex covers
Final Remarks

• The analysis is tight: there are graphs with matchings twice larger than vertex covers

• No 1.99-approximation algorithm is known
Break Matchings:
Vertex covers:
Traveling Salesman
If $P \neq NP$, then there is no k-approximation algorithm for the general version of TSP for any constant k.
 APPROXIMATION

• If P ≠ NP, then there is no k-approximation algorithm for the general version of TSP for any constant k

• Euclidean TSP: \(w(u, v) = w(v, u) \) and \(w(u, v) \leq w(u, z) + w(z, v) \)
• If $P \neq NP$, then there is no k-approximation algorithm for the general version of TSP for any constant k

• **Euclidean TSP**: $w(u, v) = w(v, u)$ and $w(u, v) \leq w(u, z) + w(z, v)$

• We will design a 2-approximation algorithm: it quickly finds a cycle that is at most twice longer than an optimal one
DEFINITION

- A tree is a connected graph without cycles
Definition

- A **tree** is a connected graph without cycles.
- A **tree** is a connected graph on n vertices with $n - 1$ edges.
Definition

- A **tree** is a connected graph without cycles
- A **tree** is a connected graph on \(n \) vertices with \(n - 1 \) edges
- A **Spanning Tree** of a graph \(G \) is a subgraph of \(G \) that (i) is a tree and (ii) contains all vertices of \(G \)
DEFINITION

• A tree is a connected graph without cycles
• A tree is a connected graph on \(n \) vertices with \(n - 1 \) edges
• A Spanning Tree of a graph \(G \) is a subgraph of \(G \) that (i) is a tree and (ii) contains all vertices of \(G \)
• A Minimum Spanning Tree of a weighted graph \(G \) is a spanning tree of the smallest weight
MINIMUM SPANNING TREE: EXAMPLES
MINIMUM SPANNING TREE: EXAMPLES
Lemma

Let G be an undirected graph with non-negative edge weights. Then $\text{MST}(G) \leq \text{TSP}(G)$.

Minimum Spanning Trees
Minimum Spanning Trees

<table>
<thead>
<tr>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be an undirected graph with non-negative edge weights. Then $\text{MST}(G) \leq \text{TSP}(G)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>By removing any edge from an optimum TSP cycle one gets a spanning tree of G.</td>
</tr>
</tbody>
</table>
Eulerian Cycle

An Eulerian cycle (or path) visits every edge exactly once
Eulerian Cycle

An **Eulerian cycle** (or path) visits every edge exactly once

Criteria

A connected undirected graph contains an Eulerian cycle, if and only if the degree of every node is even
Example

Non-Eulerian graph
ALGORITHM

• $T \leftarrow$ minimum spanning tree of G
ALGORITHM

• $T \leftarrow$ minimum spanning tree of G

• $D \leftarrow T$ with each edge doubled
ALGORITHM

• $T \leftarrow$ minimum spanning tree of G
• $D \leftarrow T$ with each edge doubled
• find an Eulerian cycle C in D
ALGORITHM

- $T \leftarrow$ minimum spanning tree of G
- $D \leftarrow T$ with each edge doubled
- find an Eulerian cycle C in D
- return a cycle that visits the nodes in the order of their first appearance in C
EXAMPLE
Example
Example
Approximation Guarantee

Lemma

The algorithm is 2-approximate.
Approximation Guarantee

Lemma
The algorithm is 2-approximate.

Proof
- The total length of the MST $T \leq \text{OPT}$
APPROXIMATION GUARANTEE

<table>
<thead>
<tr>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>The algorithm is 2-approximate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
</table>
| • The total length of the MST $T \leq \text{OPT}$
• We start with Eulerian cycle of length $2|T|$ |
Approximation Guarantee

Lemma

The algorithm is 2-approximate.

Proof

- The total length of the MST $T \leq \text{OPT}$
- We start with Eulerian cycle of length $2|T|$
- Shortcuts can only decrease the total length
IMPROVEMENT
IMPROVEMENT
Algorithm

- $T \leftarrow \text{minimum spanning tree of } G$
Algorithm

- $T \leftarrow$ minimum spanning tree of G
- $M \leftarrow$ minimum weight perfect matching on odd-degree vertices of T
Algorithm

- $T \leftarrow \text{minimum spanning tree of } G$
- $M \leftarrow \text{minimum weight perfect matching on odd-degree vertices of } T$
- find an Eulerian cycle C in $T \cup M$
ALGORITHM

- $T \leftarrow$ minimum spanning tree of G
- $M \leftarrow$ minimum weight perfect matching on odd-degree vertices of T
- find an Eulerian cycle C in $T \cup M$
- return a cycle that visits the nodes in the order of their first appearance in C
Approximation Guarantee

<table>
<thead>
<tr>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>The algorithm is $3/2$-approximate.</td>
</tr>
</tbody>
</table>
Approximation Guarantee

<table>
<thead>
<tr>
<th>Lemma</th>
<th>The algorithm is $3/2$-approximate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The total length of the MST $T \leq \text{OPT}$</td>
</tr>
</tbody>
</table>
Approximation Guarantee

Lemma

The algorithm is $3/2$-approximate.

Proof

- The total length of the MST $T \leq \text{OPT}$
- The weight of the matching $M \leq \text{OPT} / 2$
APPROXIMATION GUARANTEE

Lemma

The algorithm is $3/2$-approximate.

Proof

- The total length of the MST $T \leq \text{OPT}$
- The weight of the matching $M \leq \text{OPT} / 2$
- Shortcuts can only decrease the total length
Final Remarks

- Euclidean TSP can be approximated to within any factor \((1 + \varepsilon)\)
Final Remarks

• Euclidean TSP can be approximated to within any factor \((1 + \varepsilon)\)

• The currently best known approximation algorithm for TSP with triangle inequality is has approximation factor of \(3/2 - 10^{-36}\) (July 2020)