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APPROXIMATION ALGORITHMS

- Optimal exact solution OPT (ex: shortest TSP
cycle)

- OPT is too hard to find (ex: NP-hard)

- A k-approximation algorithm finds a solution
< kR x OPT

- Possibly efficiently! (ex: poly time)

- When do we use approximation algorithms?
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MATCHINGS

- A Matching in a graph is a set of edges without
common vertices

- A Maximal Matching is a matching which
cannot be extended to a larger matching

- A Maximum Matching is a matching of the
largest size
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JOB ASSIGNMENT

Alice | Ben | Chris | Diana

Administrator + +
Programmer + +
Librarian + +

Professor +
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ROOM ASSIGNMENT

RELI R#E2 RE3|RHL|RHS|RHO

Aaron + +

Bianca + + +

Carol + +

Dana + + + +
Emma + +

Francis + +
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ALGORITHMS
Maximal Matching

Can be found in polynomial time by a greedy
algorithm

Maximum Matching

Can be found in polynomial time by the
blossom algorithm

Minimum Weight Perfect Matching

Can be found in polynomial time by Edmonds’
algorithm
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VERTEX COVERS

- A Vertex Cover of a graph G is a set of
vertices C such that every edge of G is
connected to some vertex in C.

- A Minimal Vertex Cover is a vertex cover which
does not contain other vertex covers.

- A Minimum Vertex Cover is a vertex cover of
the smallest size.
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ALGORITHMS

Minimal Vertex Cover

Can be found in polynomial time by a greedy
algorithm

Minimum Vertex Cover

Is NP-hard. We only know exponential-time
algorithms
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APPROXIMATION ALGORITHM

- M < maximal matching in G

- return all vertices in M
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EQUIVALENT ALGORITHM

- C+ 10

- while E#£ 0

- {u, v} « any edge from E

- add u,vto C

- delete from E all edges incident to u or v

- return C



PROOF

Lemma

This algorithm runs in polynomial time and is
2-approximate: it returns a vertex cover that is
at most twice larger then a minimum vertex
cover.
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FINAL REMARKS

- The analysis is tight: there are graphs with
matchings twice larger than vertex covers

- No 1.99-approximation algorithm is known



Break
Matchings:
http://bit.ly/job-assignment
Vertex covers:
http://bit.ly/antivirus-system


http://bit.ly/job-assignment
http://bit.ly/antivirus-system

Traveling Salesman
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APPROXIMATION

- If P # NP, then there is no k-approximation
algorithm for the general version of TSP for
any constant R

- Buclidean TSP: w(u,v) = w(v,u) and
w(u,v) < w(u,z) + w(z,Vv)

- We will design a 2-approximation algorithm: it
quickly finds a cycle that is at most twice
longer than an optimal one



DEFINITION

- A tree is a connected graph without cycles



DEFINITION

- A tree is a connected graph without cycles

- A tree is a connected graph on n vertices with
n —1edges



DEFINITION

- A tree is a connected graph without cycles

- A tree is a connected graph on n vertices with
n —1edges

- A Spanning Tree of a graph G is a subgraph of
G that (i) is a tree and (ii) contains all vertices
of G



DEFINITION

- A tree is a connected graph without cycles

- A tree is a connected graph on n vertices with
n —1edges

- A Spanning Tree of a graph G is a subgraph of
G that (i) is a tree and (ii) contains all vertices
of G

- AMinimum Spanning Tree of a weighted graph
G is a spanning tree of the smallest weight



MINIMUM SPANNING TREE: EXAMPLES




MINIMUM SPANNING TREE: EXAMPLES
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MINIMUM SPANNING TREES

Lemma

Let G be an undirected graph with non-negative
edge weights. Then MST(G) < TSP(G).

Proof

By removing any edge from an optimum TSP
cycle one gets a spanning tree of G.
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EULERIAN CYCLE

An Eulerian cycle (or path) visits every edge
exactly once

Criteria

A connected undirected graph contains an
Eulerian cycle, if and only if the degree of every
node Is even



EXAMPLE

Non-Eulerian graph




EXAMPLE

Non-Eulerian graph Eulerian graph
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Lemma

The algorithm is 2-approximate.

Proof

- The total length of the MST T < OPT
- We start with Eulerian cycle of length 2|T|
- Shortcuts can only decrease the total length
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APPROXIMATION GUARANTEE

Lemma

The algorithm is 3/2-approximate.

Proof

- The total length of the MST T < OPT
- The weight of the matching M < OPT /2
- Shortcuts can only decrease the total length
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FINAL REMARKS

- Euclidean TSP can be approximated to within
any factor (1+ ¢)

- The currently best known approximation
algorithm for TSP with triangle inequality Is
has approximation factor of 3/2 —1073¢
(July 2020)



