GEMS OF TCS

RANDOMIZED ALGORITHMS

Sasha Golovnev
August 31, 2021
RANDOMIZED ALGORITHMS

• Randomized algorithm may be faster and simpler

• For some tasks randomness is necessary

• We'll use randomized algorithms in virtually all following topics

• Randomized algorithms make mistakes (with small probability)
Randomized Algorithms

• Randomized algorithm may be faster and simpler

• For some tasks randomness is necessary
Randomized Algorithms

• Randomized algorithm may be faster and simpler

• For some tasks randomness is necessary

• We’ll use randomized algorithms in virtually all following topics
Randomized Algorithms

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary
- We’ll use randomized algorithms in virtually all following topics
- Randomized algorithms make mistakes (with small probability)
• Sample Space Ω.
• **Sample Space** Ω.

$\Omega = \{1, 2, 3, 4, 5, 6\}$;
• Sample Space Ω.

$\Omega = \{1, 2, 3, 4, 5, 6\}$; $\Omega = \{HH, HT, TH, TT\}$
• **Sample Space** Ω.
 $\Omega = \{1, 2, 3, 4, 5, 6\}; \quad \Omega = \{HH, HT, TH, TT\}$

• **Event** $A \subseteq \Omega$.
• **Sample Space** Ω.
 $\Omega = \{1, 2, 3, 4, 5, 6\}; \quad \Omega = \{HH, HT, TH, TT\}$

• **Event** $A \subseteq \Omega$. $A = \{2, 4, 6\}$;
Review of Probability Theory

• Sample Space \(\Omega \).
 \(\Omega = \{1, 2, 3, 4, 5, 6\}; \quad \Omega = \{HH, HT, TH, TT\} \)

• Event \(A \subseteq \Omega \).
 \(A = \{2, 4, 6\}; \quad A = \{TT, TH\} \)
• **Sample Space** Ω.
 $\Omega = \{1, 2, 3, 4, 5, 6\}; \ \Omega = \{HH, HT, TH, TT\}$

• **Event** $A \subseteq \Omega$.
 $A = \{2, 4, 6\}; \ \ A = \{TT, TH\}$

• **Probability measure**: $\forall A, \Pr(A) \in [0, 1]$
• **Sample Space** Ω.
 $\Omega = \{1, 2, 3, 4, 5, 6\}$; $\Omega = \{HH, HT, TH, TT\}$

• **Event** $A \subseteq \Omega$. $A = \{2, 4, 6\}$; $A = \{TT, TH\}$

• **Probability measure**: $\forall A, \Pr(A) \in [0, 1]$
 • $\Pr(\Omega) = 1$
Review of Probability Theory

- **Sample Space** Ω.
 $\Omega = \{1, 2, 3, 4, 5, 6\}; \Omega = \{HH, HT, TH, TT\}$

- **Event** $A \subseteq \Omega$. $A = \{2, 4, 6\}; A = \{TT, TH\}$

- **Probability measure**: $\forall A, \Pr(A) \in [0, 1]$
 - $\Pr(\Omega) = 1$
 - A_1, A_2, \ldots are disjoint: $\Pr[\bigcup_i A_i] = \sum_i \Pr[A_i]$
Review of Probability Theory

- **Sample Space** \(\Omega \).
 \[\Omega = \{1, 2, 3, 4, 5, 6\}; \quad \Omega = \{HH, HT, TH, TT\}\]

- **Event** \(A \subseteq \Omega \). \(A = \{2, 4, 6\}; \quad A = \{TT, TH\}\)

- **Probability measure**: \(\forall A, \Pr(A) \in [0, 1] \)
 - \(\Pr(\Omega) = 1 \)
 - \(A_1, A_2, \ldots \) are disjoint: \(\Pr[\bigcup_i A_i] = \sum_i \Pr[A_i] \)
 - \(A_1 = \{HH\}, \quad A_2 = \{HT\}, \quad \Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2] \)
INDEPENDENT EVENTS

• A_1 and A_2 are independent iff

$$\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2]$$
INDEPENDENT EVENTS

• A_1 and A_2 are independent iff
 \[\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2] \]

• $A_1 = \{1\text{st die is 6}\}$, $A_2 = \{2\text{nd die is 6}\}$
INDEPENDENT EVENTS

• A_1 and A_2 are independent iff
 \[\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2] \]
• $A_1 = \{1st \text{ die is } 6\}, \ A_2 = \{2nd \text{ die is } 6\}$

\[\Pr[A_1] = 1/6; \]
INDEPENDENT EVENTS

• A_1 and A_2 are independent iff
 $\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2]$

• $A_1 = \{1st \text{ die is 6}\}$, $A_2 = \{2nd \text{ die is 6}\}$

 $\Pr[A_1] = \frac{1}{6}; \quad \Pr[A_2] = \frac{1}{6}$;
INDEPENDENT EVENTS

- A_1 and A_2 are independent iff
 \[\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2] \]
- $A_1 = \{1st\ die\ is\ 6\},\ A_2 = \{2nd\ die\ is\ 6\}$

\[\Pr[A_1] = \frac{1}{6};\ \Pr[A_2] = \frac{1}{6};\ \Pr[A_1 \cap A_2] = \frac{1}{36} \]
INDEPENDENT EVENTS

• A_1 and A_2 are independent iff
 $$\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2]$$

• $A_1 = \{1\text{st die is 6}\}$, $A_2 = \{2\text{nd die is 6}\}$

 $$\Pr[A_1] = \frac{1}{6}; \quad \Pr[A_2] = \frac{1}{6}; \quad \Pr[A_1 \cap A_2] = \frac{1}{36}$$

• $A_1 = \{1\text{st die is 1}\}$, $A_2 = \{\text{sum of two dice is 2}\}$
Independent Events

- A_1 and A_2 are independent iff
 $$\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2]$$

- $A_1 = \{1st \text{ die is 6}\}$, $A_2 = \{2nd \text{ die is 6}\}$

 \[
 \Pr[A_1] = \frac{1}{6}; \quad \Pr[A_2] = \frac{1}{6}; \quad \Pr[A_1 \cap A_2] = \frac{1}{36}
 \]

- $A_1 = \{1st \text{ die is 1}\}$, $A_2 = \{\text{sum of two dice is 2}\}$

 \[
 \Pr[A_1] = \frac{1}{6};
 \]
INDEPENDENT EVENTS

• A_1 and A_2 are independent iff

\[\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2] \]

• $A_1 = \{\text{1st die is 6}\}$, $A_2 = \{\text{2nd die is 6}\}$

\[
\Pr[A_1] = 1/6; \quad \Pr[A_2] = 1/6; \quad \Pr[A_1 \cap A_2] = 1/36
\]

• $A_1 = \{\text{1st die is 1}\}$, $A_2 = \{\text{sum of two dice is 2}\}$

\[
\Pr[A_1] = 1/6; \quad \Pr[A_2] = 1/36;
\]
INDEPENDENT EVENTS

• A_1 and A_2 are independent iff
 \[\Pr[A_1 \cap A_2] = \Pr[A_1] \cdot \Pr[A_2] \]

• $A_1 = \{1\text{st die is 6}\}$, $A_2 = \{2\text{nd die is 6}\}$
 \[\Pr[A_1] = \frac{1}{6}; \quad \Pr[A_2] = \frac{1}{6}; \quad \Pr[A_1 \cap A_2] = \frac{1}{36} \]

• $A_1 = \{1\text{st die is 1}\}$, $A_2 = \{\text{sum of two dice is 2}\}$
 \[\Pr[A_1] = \frac{1}{6}; \quad \Pr[A_2] = \frac{1}{36}; \quad \Pr[A_1 \cap A_2] = \frac{1}{36} \]
Random Variable

- Result of experiment is often not event but number
Random Variable

- Result of experiment is often not event but number
- Random variable $X : \Omega \rightarrow \mathbb{R}$
Random Variable

- Result of experiment is often not event but number
- Random variable $X: \Omega \rightarrow \mathbb{R}$
- Toss three coins, $X =$ number of heads
Random Variable

- Result of experiment is often not event but number
- Random variable $X: \Omega \rightarrow \mathbb{R}$
- Toss three coins, $X =$ number of heads
- Throw two dice:
 $Y =$ sum of numbers, $Z =$ max of numbers
Random Variable

- Result of experiment is often not event but number
- Random variable $X: \Omega \rightarrow \mathbb{R}$
- Toss three coins, $X =$ number of heads
- Throw two dice:
 - $Y =$ sum of numbers, $Z =$ max of numbers
- Expected value $\mathbb{E}[X] = \sum_i \Pr[x_i] \cdot x_i$
Random Variable

- Result of experiment is often not event but number
- Random variable \(X: \Omega \rightarrow \mathbb{R} \)
- Toss three coins, \(X = \) number of heads
- Throw two dice:
 \(Y = \) sum of numbers, \(Z = \max \) of numbers
- Expected value \(\mathbb{E}[X] = \sum_i \Pr[x_i] \cdot x_i \)
- Throw a die, \(X = \) the number you’re getting

\[
\mathbb{E}[X] = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \ldots + \frac{1}{6} \cdot 6 = 3.5
\]
Cloud Sync
Cloud Sync

- Synchronize local files to the cloud
Cloud Sync

- Synchronize local files to the cloud
- Has file been changed? File length: n bits
Cloud Sync

- Synchronize local files to the cloud
- Has file been changed? File length: n bits
- Algorithm: send n bits
Cloud Sync

- Synchronize local files to the cloud
- Has file been changed? File length: n bits
- Algorithm: send n bits
- Can send $n - 1$ bits?
No algorithm can solve the problem by sending $n - 1$ bits. Randomized algorithm can solve the problem by sending $\approx \log n$ bits!
No algorithm can solve the problem by sending $n - 1$ bits. Randomized algorithm can solve the problem by sending $\approx \log n$ bits!
No algorithm can solve the problem by sending $n - 1$ bits.

Randomized algorithm can solve the problem by sending $\approx \log n$ bits!
No algorithm can solve the problem by sending $n - 1$ bits
No algorithm can solve the problem by sending $n - 1$ bits.

Randomized algorithm can solve the problem by sending $\approx \log n$ bits!
RANDOMIZED ALGORITHM

local file

1 0 0 1 1 0 1 1 0 0

cloud file

1 0 0 1 1 1 1 1 1 1 0 0
RANDOMIZED ALGORITHM

local file

```
1 0 0 1 1 0 1 1 0 0
```

\[a \in \{0, \ldots, 2^n - 1\} \]

cloud file

```
1 0 0 1 1 1 1 1 1 0 0
```
RANDOMIZED ALGORITHM

local file

| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |

\(a \in \{0, \ldots, 2^n - 1\} \)

cloud file

| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |

\(b \in \{0, \ldots, 2^n - 1\} \)
Randomized Algorithm

Local file

\[
a \in \{0, \ldots, 2^n - 1\}
\]

Pick random prime \(p \in \{2, 3, \ldots, 100n^2 \log n\} \)

Cloud file

\[
b \in \{0, \ldots, 2^n - 1\}
\]
Randomized Algorithm

local file

| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |

\[a \in \{0, \ldots, 2^n - 1\} \]

\[a \mod p \]

Pick random prime \(p \in \{2, 3, \ldots, 100n^2 \log n\} \)

\[b \in \{0, \ldots, 2^n - 1\} \]

cloud file

| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
Randomized Algorithm

local file

| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |

\[a \in \{0, \ldots, 2^n - 1\} \]

- Pick random prime \(p \in \{2, 3, \ldots, 100n^2 \log n\} \)

- \(a \mod p \)

- EQ iff \(a = b \mod p \)

- \(b \in \{0, \ldots, 2^n - 1\} \)

cloud file

| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
ANALYSIS

• If \(a = b \), then for every \(p \), \(a = b \mod p \). We always output **EQ**!

• If \(a \neq b \), how often do we output **EQ**?

• \(a - b = 0 \mod p \).

\[2^n \geq a - b = \prod_{i=1}^{k} p_i \]

• Prime Number Theorem: there are \(\approx \frac{N}{\log N} \) prime numbers in the interval \(\{2, 3, \ldots, N\} \)

• With probability \(\approx 1 - \frac{1}{100} \), the output is correct
ANALYSIS

• If $a = b$, then for every p, $a = b \mod p$. We always output EQ!
ANALYSIS

- If $a = b$, then for every p, $a = b \mod p$. We always output EQ!
- If $a \neq b$, how often do we output EQ?
ANALYSIS

• If \(a = b \), then for every \(p \), \(a = b \mod p \). We always output \(EQ! \).

• If \(a \neq b \), how often do we output \(EQ? \)

• \(a - b = 0 \mod p \).
ANALYSIS

• If $a = b$, then for every p, $a = b \mod p$. We always output EQ!

• If $a \neq b$, how often do we output EQ?

• $a - b = 0 \mod p$.

 $2^n \geq a - b$
ANALYSIS

• If \(a = b \), then for every \(p \), \(a = b \mod p \). We always output EQ!

• If \(a \neq b \), how often do we output EQ?

• \(a - b = 0 \mod p \).

\[
2^n \geq a - b = p_1 \cdot p_2 \cdots p_k
\]
• If \(a = b \), then for every \(p \), \(a = b \mod p \). We always output \(EQ! \)
• If \(a \neq b \), how often do we output \(EQ \)?
• \(a - b = 0 \mod p \).
 \[2^n \geq a - b = p_1 \cdot p_2 \cdots p_k \geq 2^k \]
Analysis

• If $a = b$, then for every p, $a = b \mod p$. We always output EQ!

• If $a \neq b$, how often do we output EQ?

• $a - b = 0 \mod p$.

 \[2^n \geq a - b = p_1 \cdot p_2 \cdots p_k \geq 2^k\]

• Prime Number Theorem: there are $\approx N / \log N$ prime numbers in the interval $\{2, 3, \ldots, N\}$
ANALYSIS

• If \(a = b \), then for every \(p \), \(a = b \mod p \). We always output EQ!

• If \(a \neq b \), how often do we output EQ?

• \(a - b = 0 \mod p \).
 \[2^n \geq a - b = p_1 \cdot p_2 \cdots p_k \geq 2^k \]

• Prime Number Theorem: there are \(\approx \frac{N}{\log N} \) prime numbers in the interval \(\{2, 3, \ldots, N\} \)

• With probability \(\approx 1 - \frac{1}{100n} \) the output is correct
LINEARITY OF EXPECTATION

\[E[X + Y]? \]
LINEARITY OF EXPECTATION

\[\mathbb{E}[X + Y] = \sum_{i,j} \Pr[X = x_i \cap Y = y_j] \cdot (x_i + y_j) \]
LINEARITY OF EXPECTATION

\[\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] \]

\[\mathbb{E}[X + Y] = \sum_{i,j} \Pr[X = x_i \cap Y = y_j] \cdot (x_i + y_j) \]

\[= \sum_{i} x_i \sum_{j} \Pr[X = x_i \cap Y = y_j] \]

\[+ \sum_{j} y_j \sum_{i} \Pr[X = x_i \cap Y = y_j] \]
LINEARITY OF EXPECTATION

\(\mathbb{E}[X + Y]? \)

\[
\mathbb{E}[X + Y] = \sum_{i,j} \text{Pr}[X = x_i \cap Y = y_j] \cdot (x_i + y_j)
\]

\[
= \sum_i x_i \sum_j \text{Pr}[X = x_i \cap Y = y_j]
\]

\[
+ \sum_j y_j \sum_i \text{Pr}[X = x_i \cap Y = y_j]
\]

\[
= \sum_i x_i \text{Pr}[X = x_i] + \sum_j y_j \text{Pr}[Y = y_j]
\]
LINEARITY OF EXPECTATION

$$\mathbb{E}[X + Y] = \sum_{i,j} \Pr[X = x_i \cap Y = y_j] \cdot (x_i + y_j)$$

$$= \sum_i x_i \sum_j \Pr[X = x_i \cap Y = y_j]$$

$$+ \sum_j y_j \sum_i \Pr[X = x_i \cap Y = y_j]$$

$$= \sum_i x_i \Pr[X = x_i] + \sum_j y_j \Pr[Y = y_j]$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$
LINEARITY OF EXPECTATION

• One die: \(\mathbb{E}[X] = 3.5 \)
LINEARITY OF EXPECTATION

• One die: $\mathbb{E}[X] = 3.5$

• Five dice? $\mathbb{E}[X_1 + X_2 + X_3 + X_4 + X_5]$?
LINEARITY OF EXPECTATION

• One die: \(\mathbb{E}[X] = 3.5 \)

• Five dice? \(\mathbb{E}[X_1 + X_2 + X_3 + X_4 + X_5] \) ?

• By linearity of expectation:

\[
\mathbb{E}[X_1 + X_2 + X_3 + X_4 + X_5] \\
= \mathbb{E}[X_1] + \mathbb{E}[X_2] + \mathbb{E}[X_3] + \mathbb{E}[X_4] + \mathbb{E}[X_5] \\
= 5 \cdot 3.5 = 17.5
\]
• Alice and Bob have (unusual) dice
• Numbers on Alice’s die are 2, 2, 2, 2, 3, 3
• Numbers on Bob’s die are 1, 1, 1, 1, 6, 6
• Alice and Bob throw their dice; the one with the larger number on the die wins
• Whose die has larger expected number?
• Who wins with higher probability?
Maximum Cut (Max-CUT)
Maximum Cut

- Undirected graph G, vertices V, edges E
Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition

NP-hard to solve
Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$
Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V, \overline{S} \subseteq V$
- Cut $\delta(S) = \{(u, v) \in E: u \in S, v \in \overline{S}\}$
- \text{Max-CUT}: $\max_{S \subseteq V} \delta(S)$
- NP-hard to solve
Maximum Cut

• Undirected graph G, vertices V, edges E

• Bipartition of V that maximizes the number of edges crossing the partition

• Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$

• Cut $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$

• Max-CUT: $\max_{S \subseteq V} \delta(S)$
Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$
- Cut $\delta(S) = \{(u, v) \in E : u \in S, v \in \overline{S}\}$
- Max-CUT: $\max_{S \subseteq V} \delta(S)$
- **NP**-hard to solve
Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V$, $\overline{S} \subseteq V$
- Cut $\delta(S) = \{(u, v) \in E: u \in S, v \in \overline{S}\}$
- Max-CUT: $\max_{S \subseteq V} \delta(S)$
- NP-hard to solve exactly
RANDOMIZED APPROXIMATION

• Output a random subset $S \subseteq V$
Randomized Approximation

- Output a random subset $S \subseteq V$
- In other words, add each vertex v in S independently with probability $1/2$
Randomized Approximation

- Output a random subset $S \subseteq V$

- In other words, add each vertex v in S independently with probability $1/2$

- Each edge (u, v) is cut with probability $1/2$
ANALYSIS

• $X_{u,v} = 1$ if (u, v) is cut, $X_{u,v} = 0$ otherwise
ANALYSIS

• $X_{u,v} = 1$ if (u, v) is cut, $X_{u,v} = 0$ otherwise
• $X_{u,v} = 1$ with probability $1/2$

Number of cut edges

$\sum_{(u,v) \in E} X_{u,v}$

Expected number of cut edges

$E \left[\sum_{(u,v) \in E} X_{u,v} \right] = \sum_{(u,v) \in E} E \left[X_{u,v} \right] = |E| / 2$
• $X_{u,v} = 1$ if (u, v) is cut, $X_{u,v} = 0$ otherwise
• $X_{u,v} = 1$ with probability $1/2$
• $\mathbb{E}[X_{u,v}] = 1/2$
ANALYSIS

• $X_{u,v} = 1$ if (u,v) is cut, $X_{u,v} = 0$ otherwise
• $X_{u,v} = 1$ with probability $1/2$
• $\mathbb{E}[X_{u,v}] = 1/2$
• Number of cut edges

$$\sum_{(u,v) \in E} X_{u,v}$$
ANALYSIS

• $X_{u,v} = 1$ if (u,v) is cut, $X_{u,v} = 0$ otherwise
• $X_{u,v} = 1$ with probability $1/2$
• $\mathbb{E}[X_{u,v}] = 1/2$
• Number of cut edges

$$\sum_{(u,v) \in E} X_{u,v}$$

• Expected number of cut edges

$$\mathbb{E} \left[\sum_{(u,v) \in E} X_{u,v} \right] = \sum_{(u,v) \in E} \mathbb{E}[X_{u,v}] = |E|/2$$
2-APPROXIMATION

- Max-CUT: $\text{OPT} \leq |E|$
2-APPROXIMATION

- Max-CUT: $\text{OPT} \leq |E|$
- Our algorithm: $\mathbb{E}[\delta(S)] \geq |E|/2$
2-APPROXIMATION

• Max-CUT: $\text{OPT} \leq |E|$

• Our algorithm: $\mathbb{E}[\delta(S)] \geq |E|/2$

• $\mathbb{E}[\delta(S)] \geq \text{OPT} /2$
2-APPROXIMATION

- Max-CUT: $\text{OPT} \leq |E|$

- Our algorithm: $\mathbb{E}[\delta(S)] \geq |E|/2$

- $\mathbb{E}[\delta(S)] \geq \text{OPT} / 2$

- Can we have algorithm that always outputs $\delta(S) \geq \text{OPT} / 2$?
Markov’s Inequality

Theorem

If X is a non-negative random variable*, then

$$\forall a, \quad \Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}.$$
Theorem

If X is non-negative random variable*, then

$$\forall a, \quad \Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}.$$

Examples:

$$\Pr[X \geq 2\mathbb{E}[X]] \leq \frac{1}{2}.$$
Markov’s Inequality

Theorem

If X is a non-negative random variable*, then

$$\forall a, \quad \Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}.$$

Examples:

$$\Pr[X \geq 2\mathbb{E}[X]] \leq \frac{1}{2}.$$

$$\Pr[X \geq 5\mathbb{E}[X]] \leq \frac{1}{5}.$$
<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%</td>
</tr>
<tr>
<td>LOTTERY BUDGET</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Problem</td>
</tr>
<tr>
<td>A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%</td>
</tr>
</tbody>
</table>

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n
A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by \(n \)
- Then the budget of the lottery is 10\(n \) dollars
A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n
- Then the budget of the lottery is $10n$ dollars
- $10n \times 0.4 = 4n$ dollars are spent on the prizes
A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n
- Then the budget of the lottery is $10n$ dollars
- $10n \times 0.4 = 4n$ dollars are spent on the prizes
- By our assumption at least $\frac{n}{100}$ tickets win at least 500 dollars
LOTTERY BUDGET

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%</td>
</tr>
</tbody>
</table>

- In total these tickets win \(\frac{n}{100} \times 500 = 5n \) dollars
Lottery Budget

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%</td>
</tr>
</tbody>
</table>

- In total these tickets win \(\frac{n}{100} \times 500 = 5n \) dollars
- This exceeds the total prize budget of \(4n \)!
A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%

- In total these tickets win \(\frac{n}{100} \times 500 = 5n \) dollars
- This exceeds the total prize budget of \(4n \)!
- Contradiction!
GEOMETRIC PROOF

\[E[X] \geq a \times \Pr[X \geq a] \]
GEOMETRIC PROOF

\[\mathbb{E}[X] \geq a \times \Pr[X \geq a] \]
Suppose \(X \) takes values \(a_1, a_2, a_3, a_4 \) with probabilities \(p_1, p_2, p_3, p_4 \)
\[\mathbb{E}[X] \geq a \times \Pr[X \geq a] \]

Suppose \(X \) takes values \(a_1, a_2, a_3, a_4 \) with probabilities \(p_1, p_2, p_3, p_4 \)
$\mathbb{E}[X] \geq a \times \Pr[X \geq a]$

Suppose X takes values a_1, a_2, a_3, a_4 with probabilities p_1, p_2, p_3, p_4.

The gray region is larger; the inequality follows.
GEOMETRIC PROOF

$$E[X] \geq a \times Pr[X \geq a]$$

Suppose X takes values a_1, a_2, a_3, a_4 with probabilities p_1, p_2, p_3, p_4
\(\mathbb{E}[X] \geq a \times \Pr[X \geq a] \)

Suppose \(X \) takes values \(a_1, a_2, a_3, a_4 \) with probabilities \(p_1, p_2, p_3, p_4 \)
Geometric Proof

$$\mathbb{E}[X] \geq a \times \Pr[X \geq a]$$

Suppose X takes values a_1, a_2, a_3, a_4 with probabilities p_1, p_2, p_3, p_4

$\mathbb{E}[X]$ is the area of the gray region
\(\mathbb{E}[X] \geq a \times \text{Pr}[X \geq a] \)

Suppose \(X \) takes values \(a_1, a_2, a_3, a_4 \) with probabilities \(p_1, p_2, p_3, p_4 \)

\(\mathbb{E}[X] \) is the area of the gray region

\(a \times \text{Pr}[X \geq a] \) is the area of the red region
GEOMETRIC PROOF

\[\mathbb{E}[X] \geq a \times \Pr[X \geq a] \]

Suppose \(X \) takes values \(a_1, a_2, a_3, a_4 \) with probabilities \(p_1, p_2, p_3, p_4 \)

\[\mathbb{E}[X] \] is the area of the gray region

\(a \times \Pr[X \geq a] \) is the area of the red region

The gray region is larger: the inequality follows
Approximation Guarantee

- $\mathbb{E}[\# \text{cut edges}] = |E|/2 \implies \mathbb{E}[\# \text{uncut edges}] = |E|/2$

With probability at least $\varepsilon/2$, we have a $2 - \varepsilon$-approximation.

Ex. $\varepsilon = 1/100$: with probability at least $1/200$, we have a 2.03-approximation.
Approximation Guarantee

- $\mathbb{E}[\#\text{cut edges}] = \frac{|E|}{2} \implies
 \mathbb{E}[\#\text{uncut edges}] = \frac{|E|}{2}$

- $\Pr[\#\text{uncut edges} \geq \frac{|E|}{2}(1 + \varepsilon)] \leq \frac{1}{1+\varepsilon}$

With probability at least $\varepsilon/2$, we have a 2ε-approximation.

Ex. $\varepsilon = 1/100$: with probability at least $1/200$, we have a 2.03-approximation.
APPROXIMATION GUARANTEE

- $\mathbb{E}[\#\text{cut edges}] = |E|/2 \implies \mathbb{E}[\#\text{uncut edges}] = |E|/2$

- $\Pr[\#\text{uncut edges} \geq \frac{|E|}{2}(1 + \varepsilon)] \leq \frac{1}{1+\varepsilon}$

- $\Pr[\#\text{cut edges} \leq \frac{|E|}{2}(1 - \varepsilon)] \leq \frac{1}{1+\varepsilon} \leq 1 - \varepsilon/2$

With probability at least $\varepsilon/2$, we have a $2/(1+\varepsilon)$-approximation.

Example: $\varepsilon = 1/100$: with probability at least $1/200$, we have a $2/1.03$-approximation.
Approximation Guarantee

- \(\mathbb{E}[\#\text{cut edges}] = |E|/2 \implies \mathbb{E}[\#\text{uncut edges}] = |E|/2 \)
- \(\Pr[\#\text{uncut edges} \geq \frac{|E|}{2}(1 + \varepsilon)] \leq \frac{1}{1+\varepsilon} \)
- \(\Pr[\#\text{cut edges} \leq \frac{|E|}{2}(1 - \varepsilon)] \leq \frac{1}{1+\varepsilon} \leq 1 - \varepsilon/2 \)
- With probability at least \(\varepsilon/2 \), we have \(\frac{2}{1-\varepsilon} \)-approximation

Ex. \(\varepsilon = \frac{1}{100} \): with probability at least \(\frac{1}{200} \), we have 0.03-approximation
APPROXIMATION GUARANTEE

- $\mathbb{E}[\#\text{cut edges}] = |E|/2 \implies \mathbb{E}[\#\text{uncut edges}] = |E|/2$

- $\Pr[\#\text{uncut edges} \geq \frac{|E|}{2}(1 + \varepsilon)] \leq \frac{1}{1+\varepsilon}$

- $\Pr[\#\text{cut edges} \leq \frac{|E|}{2}(1 - \varepsilon)] \leq \frac{1}{1+\varepsilon} \leq 1 - \varepsilon/2$

- With probability at least $\varepsilon/2$, we have $\frac{2}{1-\varepsilon}$-approximation

- Ex. $\varepsilon = 1/100$: with probability at least $1/200$, we have 2.03-approximation
PROBABILITY AMPLIFICATION

• Pick independent uniform subsets $S_1, \ldots, S_k \subseteq V$
Probability Amplification

• Pick independent uniform subsets $S_1, \ldots, S_k \subseteq V$

• Output the subset with maximum cut $\delta(S_i)$
Probability Amplification

- Pick independent uniform subsets $S_1, \ldots, S_k \subseteq V$
- Output the subset with maximum cut $\delta(S_i)$
- $\Pr[\max \delta(S_i) \leq \frac{|E|}{2} (1 - \varepsilon)]$

We have $2^{1 - \varepsilon}$-approximation with probability $\frac{1}{10}$.

$\Pr[\max \delta(S_i) \leq \frac{|E|}{2} (1 - \varepsilon)]$
• Pick independent uniform subsets $S_1, \ldots, S_k \subseteq V$

• Output the subset with maximum cut $\delta(S_i)$

• $Pr[\max \delta(S_i) \leq \frac{|E|}{2} (1 - \varepsilon)] = Pr[\text{all } \delta(S_i) \leq \frac{|E|}{2} (1 - \varepsilon)]$
• Pick independent uniform subsets $S_1, \ldots, S_k \subseteq V$

• Output the subset with maximum cut $\delta(S_i)$

• $\Pr[\max \delta(S_i) \leq \frac{|E|}{2} (1 - \varepsilon)] = \Pr[\text{all } \delta(S_i) \leq \frac{|E|}{2} (1 - \varepsilon)] \\ \leq (1 - \varepsilon/2)^k$
PROBABILITY AMPLIFICATION

• Pick independent uniform subsets $S_1, \ldots, S_k \subseteq V$

• Output the subset with maximum cut $\delta(S_i)$

• $\Pr[\max \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)] = \Pr[\text{all } \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)]$

 $\leq (1 - \varepsilon/2)^k \leq e^{-\varepsilon k/2}$
Probability Amplification

- Pick independent uniform subsets $S_1, \ldots, S_k \subseteq V$
- Output the subset with maximum cut $\delta(S_i)$
- $\Pr[\text{max } \delta(S_i) \leq \frac{|E|}{2} (1 - \varepsilon)] = \Pr[\text{all } \delta(S_i) \leq \frac{|E|}{2} (1 - \varepsilon)] \leq (1 - \varepsilon/2)^k \leq e^{-\varepsilon k/2} \leq \frac{1}{10^{10} n}$ for $k = \frac{2 \ln n + 50}{\varepsilon}$
Probability Amplification

- Pick independent uniform subsets $S_1, \ldots, S_k \subseteq V$
- Output the subset with maximum cut $\delta(S_i)$
 \[
 \Pr[\max \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)] = \Pr[\text{all } \delta(S_i) \leq \frac{|E|}{2}(1-\varepsilon)] \\
 \leq (1 - \varepsilon/2)^k \leq e^{-\varepsilon k/2} \leq \frac{1}{10^{10}n} \text{ for } k = \frac{2 \ln n + 50}{\varepsilon}
 \]
- We have $\frac{2}{1-\varepsilon}$-approximation with probability $1 - \frac{1}{10^{10}n}$
Summary

• Randomized algorithm may be faster and simpler
SUMMARY

• Randomized algorithm may be faster and simpler

• For some tasks randomness is necessary
SUMMARY

• Randomized algorithm may be faster and simpler

• For some tasks randomness is necessary

• We can go from expectation to probability via Markov’s inequality
SUMMARY

• Randomized algorithm may be faster and simpler

• For some tasks randomness is necessary

• We can go from expectation to probability via Markov’s inequality

• We can amplify probability of success by independent repetitions