DATA STRUCTURES

Stack, Queue, List, Heap

Search Trees

Hash Tables

hash(unsigned x) {
 x ^= x >> (w-m);
 return (a*x) >> (w-m);
}
Coping with Hard Problems

• Some problems are too hard to solve exactly
COPING WITH HARD PROBLEMS

• Some problems are too hard to solve exactly

• Approximation
COPING WITH HARD PROBLEMS

• Some problems are too hard to solve exactly

• Approximation

• Randomness
COPING WITH HARD PROBLEMS

• Some problems are too hard to solve exactly

• Approximation

• Randomness

• Today: Preprocessing
EXAMPLES

- **Graph Distances**: Preprocess a road network in order to efficiently compute distance queries between cities (Google Maps)

- **Clustering**: Preprocess a set of movies in order to efficiently find closest movie to a query movie (Netflix recommendations)
Examples

- **Graph Distances**: Preprocess a road network in order to efficiently compute distance queries between cities (Google Maps)

- **Clustering**: Preprocess a set of movies in order to efficiently find closest movie to a query movie (Netflix recommendations)
DATA STRUCTURES

Preprocessing
Data Structures

Queries

Preprocessing
DATA STRUCTURES

Queries

New York — Washington
Preprocessing

Queries

New York — Washington
DATA STRUCTURES

Queries

New York — Washington

Washington — Boston

Preprocessing
Stealing Passwords
Password Hashing

User → login/pwd → Gmail
haveibeenpwned.com: Your account has been compromised
PASSWORD HASHING

user

login/pwd

login/hash(pwd)
PASSWORD HASHING

hash(qwerty)=1xe4ht
hash(111111)=nh83l0
Password Hashing

haveibeenpwned.com: Your account has been compromised

hash(qwerty)=1xe4ht
hash(111111)=nh83l0
Hashing

- (Cryptographic) hash function maps strings to strings such that it’s hard to invert
HASHING

• (Cryptographic) hash function maps strings to strings such that it’s hard to invert

• Ideally, to find a password that leads to a fixed hash value, one needs to brute force all possible passwords
Hashing

- (Cryptographic) hash function maps strings to strings such that it’s hard to invert
- Ideally, to find a password that leads to a fixed hash value, one needs to brute force all possible passwords
- Hash functions are publicly known (SHA-3)
(Cryptographic) hash function maps strings to strings such that it’s hard to invert

Ideally, to find a password that leads to a fixed hash value, one needs to brute force all possible passwords

Hash functions are publicly known (SHA-3)

For now, consider hash functions \(f: \{1, \ldots, N\} \rightarrow \{1, \ldots, N\} \) that are bijections
Inverting a Bijection

- Let $f: \{1, \ldots, N\} \rightarrow \{1, \ldots, N\}$ be a bijection
Inverting a Bijection

- Let $f: \{1, \ldots, N\} \rightarrow \{1, \ldots, N\}$ be a bijection
- Invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$
INVERTING A BIJECTION

- Let $f: \{1, \ldots, N\} \rightarrow \{1, \ldots, N\}$ be a bijection
- Invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$
- Let’s define a directed graph on N vertices with edges $x \rightarrow f(x)$
Inverting a Bijection

• Let $f: \{1, \ldots, N\} \to \{1, \ldots, N\}$ be a bijection
• Invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$
• Let’s define a directed graph on N vertices with edges $x \to f(x)$
• In- and out-degrees of all vertices are 1
INVERTING A BIJECTION

• Let $f: \{1, \ldots, N\} \rightarrow \{1, \ldots, N\}$ be a bijection

• Invert it in time $T = \sqrt{N}$ and space $S = \sqrt{N}$

• Let’s define a directed graph on N vertices with edges $x \rightarrow f(x)$

• In- and out-degrees of all vertices are 1

• Thus, this graph is a union of cycles
INVERTING A BIJECTION
Store x landmarks,
INVERTING A BIJECTION

Store \(x \) landmarks, and links \(\rightsquigarrow \) to previous landmarks.
Inverting a Bijection

Store x landmarks, and links to previous landmarks. Space $S \approx \sqrt{N}$.
Inverting a Bijection

Store x landmarks, and links \mapsto to previous landmarks
space $S \approx \sqrt{N}$
Inverting a Bijection

Store x landmarks, and links \uparrow to previous landmarks
space $S \approx \sqrt{N}$
time $T \approx \sqrt{N}$:
Store \(x \) landmarks, and links \(\rightarrow \) to previous landmarks
space \(S \approx \sqrt{N} \)
time \(T \approx \sqrt{N} \):
Invert \(y = f(x) \)
Store x landmarks, and links \rightarrow to previous landmarks
space $S \approx \sqrt{N}$
time $T \approx \sqrt{N}$:
Invert $y = f(x)$
Inverting a Bijection

Store x landmarks, and links \rightarrow to previous landmarks
space $S \approx \sqrt{N}$
time $T \approx \sqrt{N}$:
Invert $y = f(x)$
Store x landmarks, and links to previous landmarks space $S \approx \sqrt{N}$ time $T \approx \sqrt{N}$:

Invert $y = f(x)$
Inverting a Bijection

Store x landmarks, and links \Rightarrow to previous landmarks
space $S \approx \sqrt{N}$
time $T \approx \sqrt{N}$:
Invert $y = f(x)$
Inverting a Bijection

Store x landmarks, and links \mapsto to previous landmarks

Space $S \approx \sqrt{N}$

Time $T \approx \sqrt{N}$

Invert $y = f(x)$
Invert y = f(x)

Store x landmarks, and links \(\rightarrow \) to previous landmarks

space \(S \approx \sqrt{N} \)

time \(T \approx \sqrt{N} \): Invert \(y = f(x) \)
Inverting a Bijection

Store x landmarks, and links \rightarrow to previous landmarks

space $S \approx \sqrt{N}$

time $T \approx \sqrt{N}$:

Invert $y = f(x)$

\[y = f(x) \]

\[f(y) \]
DATA STRUCTURE

- Let $ST = N$
• Let $ST = N$
• Let’s define a directed graph on N vertices with edges $x \rightarrow f(x)$
Let $ST = N$

Let’s define a directed graph on N vertices with edges $x \rightarrow f(x)$

Partition the graph into cycles
Let $ST = N$

- Let’s define a directed graph on N vertices with edges $x \rightarrow f(x)$
- Partition the graph into cycles
- Ignore cycles of length $\leq T$
Data Structure

- Let $ST = N$
- Let’s define a directed graph on N vertices with edges $x \rightarrow f(x)$
- Partition the graph into cycles
- Ignore cycles of length $\leq T$
- In all other cycles store every Tth vertex as a landmark
Data Structure

• Let $ST = N$

• Let’s define a directed graph on N vertices with edges $x \to f(x)$

• Partition the graph into cycles

• Ignore cycles of length $\leq T$

• In all other cycles store every Tth vertex as a landmark

• Space: S, query time: T
Prohibited Passwords
PROHIBITED PASSWORDS

- Check if entered password is in the list of m prohibited passwords
PROHIBITED PASSWORDS

• Check if entered password is in the list of m prohibited passwords

• We can store m strings, check in $\sim \log m$ time
PROHIBITED PASSWORDS

• Check if entered password is in the list of m prohibited passwords

• We can store m strings, check in $\sim \log m$ time

• **Bloom filters**: store $\sim m$ bits, check in $O(1)$ time
PROHIBITED PASSWORDS

• Check if entered password is in the list of m prohibited passwords

• We can store m strings, check in $\sim \log m$ time

• *Bloom filters*: store $\sim m$ bits, check in $O(1)$ time

• We’ll be wrong with small probability
Data Structure

- We want a data structure that supports two operations

- Hashtables: less efficient but don't make mistakes

- Bloom filter will use array of \(n \) bits:
 \[A[0], \ldots, A[n-1] \]
 initialized with zeros

- We'll use \(k = O(1) \) hash functions
We want a data structure that supports two operations
 • Insert(x)
• We want a data structure that supports two operations
 • Insert\((x) \)
 • Lookup\((x) \)
We want a data structure that supports two operations:
- Insert(x)
- Lookup(x)

Hashtables: less efficient but don’t make mistakes.
We want a data structure that supports two operations
 • Insert(x)
 • Lookup(x)

Hashtables: less efficient but don’t make mistakes

Bloom filter will use array of n bits $A[0], \ldots, A[n - 1]$, initialized with zeros
We want a data structure that supports two operations

- Insert\((x) \)
- Lookup\((x) \)

Hashtables: less efficient but don’t make mistakes

Bloom filter will use array of \(n \) bits \(A[0], \ldots, A[n-1] \), initialized with zeros

We’ll use \(k = O(1) \) hash functions
We have k hash functions f_1, \ldots, f_k from strings to $\{0, \ldots, n - 1\}$.
Hash Functions

- We have k hash functions f_1, \ldots, f_k from strings to $\{0, \ldots, n-1\}$

- Assume that functions are independent and uniform random
BLOOM FILTER

- **Insert(x):**
 - for $i = 1, \ldots, k$,
 - $A[f_i(x)] \leftarrow 1$
Bloom Filter

- Insert(x):
 - for $i = 1, \ldots, k$,
 - $A[f_i(x)] \leftarrow 1$
- Lookup(x):
 - return 1 iff for every $i = 1, \ldots, k$, $A[f_i(x)] = 1$
ANALYSIS