GEMS OF TCS

EXPONENTIAL-TIME ALGORITHMS

Sasha Golovnev

September 12, 2022
EXACT ALGORITHMS

• We need to solve problem exactly
Exact Algorithms

- We need to solve problem exactly
- Problem takes exponential time to solve exactly
EXACT ALGORITHMS

- We need to solve problem exactly
- Problem takes exponential time to solve exactly
- Intelligent exhaustive search: finding optimal solution without going through all candidate solutions
Running Time

<table>
<thead>
<tr>
<th>Running time:</th>
<th>n</th>
<th>n^2</th>
<th>n^3</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 10^9:</td>
<td>10^9</td>
<td>$10^{4.5}$</td>
<td>10^3</td>
<td>12</td>
</tr>
</tbody>
</table>
Running Time

<table>
<thead>
<tr>
<th>running time:</th>
<th>n</th>
<th>n^2</th>
<th>n^3</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 10^9:</td>
<td>10^9</td>
<td>$10^{4.5}$</td>
<td>10^3</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>running time:</th>
<th>$n!$</th>
<th>4^n</th>
<th>2^n</th>
<th>1.308^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 10^9:</td>
<td>12</td>
<td>14</td>
<td>29</td>
<td>77</td>
</tr>
</tbody>
</table>
Traveling Salesman Problem (TSP)
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.

length: 9
ALGORITHMS

• Classical optimization problem with countless number of real life applications (see Lecture 1)
ALGORITHMS

• Classical optimization problem with countless number of real life applications (see Lecture 1)

• No polynomial time algorithms known
ALGORITHMS

• Classical optimization problem with countless number of real life applications (see Lecture 1)
• No polynomial time algorithms known
• We’ll see exact exponential-time algorithms
A naive algorithm just checks all possible $\sim n!$ cycles.
A naive algorithm just checks all possible $\sim n!$ cycles.

We’ll see

- Use dynamic programming to solve TSP in $O(n^2 \cdot 2^n)$
A naive algorithm just checks all possible $\sim n!$ cycles.

We’ll see

- Use dynamic programming to solve TSP in $O(n^2 \cdot 2^n)$
- The running time is exponential, but is much better than $n!$
Dynamic Programming

- Dynamic programming is one of the most powerful algorithmic techniques
Dynamic programming is one of the most powerful algorithmic techniques.

Rough idea: express a solution for a problem through solutions for smaller subproblems.
Dynamic programming is one of the most powerful algorithmic techniques.

Rough idea: express a solution for a problem through solutions for smaller subproblems.

Solve subproblems one by one. Store solutions to subproblems in a table to avoid recomputing the same thing again.
For a subset of vertices $S \subseteq \{1, \ldots, n\}$ containing the vertex 1 and a vertex $i \in S$, let $C(S, i)$ be the length of the shortest path that starts at 1, ends at i and visits all vertices from S exactly once.
For a subset of vertices $S \subseteq \{1, \ldots, n\}$ containing the vertex 1 and a vertex $i \in S$, let $C(S, i)$ be the length of the shortest path that starts at 1, ends at i and visits all vertices from S exactly once.

- $C(\{1\}, 1) = 0$ and $C(S, 1) = +\infty$ when $|S| > 1$
• Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
Recurrence Relation

• Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S

• The subpath from 1 to j is the shortest one visiting all vertices from $S - \{i\}$ exactly once
Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S.

The subpath from 1 to j is the shortest one visiting all vertices from $S - \{i\}$ exactly once.

Hence

$$C(S, i) = \min_j \{C(S - \{i\}, j) + d_{ji}\},$$

where the minimum is over all $j \in S$ such that $j \neq i$.
ORDER OF SUBPROBLEMS

• Need to process all subsets $S \subseteq \{1, \ldots, n\}$ in an order that guarantees that when computing the value of $C(S, i)$, the values of $C(S - \{i\}, j)$ have already been computed.
Order of Subproblems

- Need to process all subsets $S \subseteq \{1, \ldots, n\}$ in an order that guarantees that when computing the value of $C(S, i)$, the values of $C(S - \{i\}, j)$ have already been computed.
- For example, we can process subsets in order of increasing size.
ALGORITHM

\[C(\ast, \ast) \leftarrow +\infty \]

\[C(\{1\}, 1) \leftarrow 0 \]
ALGORITHM

\[C(\ast, \ast) \leftarrow +\infty \]
\[C(\{1\}, 1) \leftarrow 0 \]

for s from 2 to n:

for all \(1 \in S \subseteq \{1, \ldots, n\}\) of size s:
Algorithm

\[C(*, *) \leftarrow +\infty \]

\[C(\{1\}, 1) \leftarrow 0 \]

for s from 2 to n:

for all \(1 \in S \subseteq \{1, \ldots, n\}\) of size s:

for all \(i \in S, i \neq 1:\)

for all \(j \in S, j \neq i\)

\[C(S, i) \leftarrow \min\{C(S, i), C(S - \{i\}, j) + d_{ji}\} \]
\textbf{Algorithm}

\begin{align*}
C(\ast, \ast) & \leftarrow +\infty \\
C(\{1\}, 1) & \leftarrow 0 \\
\text{for } s \text{ from 2 to } n: \\
\quad & \text{for all } 1 \in S \subseteq \{1, \ldots, n\} \text{ of size } s: \\
\quad & \quad \text{for all } i \in S, i \neq 1: \\
\quad & \quad \quad \text{for all } j \in S, j \neq i \\
\quad & \quad \quad \quad C(S, i) \leftarrow \min\{C(S, i), C(S - \{i\}, j) + d_{ji}\} \\
\text{return } & \min_i\{C(\{1, \ldots, n\}, i) + d_{i,1}\}
\end{align*}
Satisfiability Problem (SAT)
(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)
\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)\]
\(\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_2 \lor \neg x_3 \lor \ldots \lor x_8) \)
\(\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_2 \lor \neg x_3 \lor \ldots \lor x_8) \)

\(\phi \) is satisfiable if

\[\exists x \in \{0, 1\}^n : \phi(x) = 1. \]

Otherwise, \(\phi \) is unsatisfiable
k-SAT

$\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land ... \land (x_2 \lor \neg x_3 \lor \ldots \lor x_8)$

ϕ is satisfiable if

$\exists x \in \{0, 1\}^n : \phi(x) = 1$.

Otherwise, ϕ is unsatisfiable

n Boolean vars, m clauses
\(k\text{-SAT} \)

\[
\phi(x_1, \ldots, x_n) = (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \\
\ldots \land \\
(x_2 \lor \neg x_3 \lor \ldots \lor x_8)
\]

\(\phi \) is satisfiable if

\[
\exists x \in \{0, 1\}^n : \phi(x) = 1.
\]

Otherwise, \(\phi \) is unsatisfiable

\(n \) Boolean vars, \(m \) clauses

\(k\text{-SAT} \) is SAT where clause length \(\leq k \)
k-SAT. EXAMPLES

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)\]
k-SAT. EXAMPLES

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)$$

$$(x_1) \land (\neg x_2) \land (x_3) \land (\neg x_1)$$
COMPLEXITY OF SAT

1-SAT
2-SAT
3-SAT
...
But how hard is SAT?
SAT in 2^n

- $O^*(\cdot)$ suppresses polynomial factors in the input length:

\[2^n n^{10} m^2 = O^*(2^n) \]
SAT in 2^n

- $O^*(\cdot)$ suppresses polynomial factors in the input length:

$$2^n n^{10} m^2 = O^*(2^n)$$

- SAT can be solved in time $O^*(2^n)$
SAT in 2^n

- $O^*(\cdot)$ suppresses polynomial factors in the input length:

 $$2^n n^{10} m^2 = O^*(2^n)$$

- SAT can be solved in time $O^*(2^n)$

- We don’t know how to solve SAT exponentially faster: in time $O^*(1.999^n)$
3-SAT

- \((x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)\)
3-SAT

• \((x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)\)

Consider three sub-problems:

• \(x_1 = 1\), \(x_2 = 1\), \(x_9 = 1\)

• \(x_1 = 0\), \(x_2 = 1\), \(x_9 = 1\)

The original formula is SAT \iff at least one of these formulas is SAT
3-SAT

\[(x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8) \]

Consider three sub-problems:

- \(x_1 = 1 \)
- \(x_1 = 0, x_2 = 1 \)
- \(x_1 = 0, x_2 = 0, x_9 = 1 \)

The original formula is SAT \(\text{iff} \) at least one of these formulas is SAT.
• \((x_1 \lor x_2 \lor x_9) \land \ldots \land (x_2 \lor \neg x_3 \lor x_8)\)

• Consider three sub-problems:
 • \(x_1 = 1\)
 • \(x_1 = 0, x_2 = 1\)
 • \(x_1 = 0, x_2 = 0, x_9 = 1\)

• The original formula is SAT iff at least one of these formulas is SAT
3-SAT. Analysis

- $T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$
3-SAT. Analysis

- $T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$
- $T(n) \leq 1.85^n$
3-SAT. ANALYSIS

- $T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$
- $T(n) \leq 1.85^n$

\[
T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)
\leq 1.85^{n-1} + 1.85^{n-2} + 1.85^{n-3}
= 1.85^n \left(\frac{1}{1.85} + \frac{1}{1.85^2} + \frac{1}{1.85^3} \right)
< 1.85^n \left(0.991 \right)
< 1.85^n
\]
3-SAT. ANALYSIS

• $T(n) \leq T(n - 1) + T(n - 2) + T(n - 3)$

• $T(n) \leq 1.85^n$:

$$T(n) \leq T(n - 1) + T(n - 2) + T(n - 3) \leq 1.85^{n-1} + 1.85^{n-2} + 1.85^{n-3}$$

$$= 1.85^n \left(\frac{1}{1.85} + \frac{1}{1.85^2} + \frac{1}{1.85^3} \right)$$

$$< 1.85^n (0.991)$$

$$< 1.85^n$$

• There are even faster algorithms: 1.308^n [HKZZ19]
How hard can SAT be?
Algorithmic Complexity of SAT

2-SAT $O(m)$

1-SAT $O(m)$
Algorithmic Complexity of SAT

1-SAT $O(m)$

2-SAT $O(m)$

3-SAT 1.308^n
Algorithmic Complexity of SAT

- 1-SAT: $O(n)$
- 2-SAT: $O(m)$
- 3-SAT: 1.308^n
- k-SAT: $2^{n(1-O(1/k))}$
Algorithmic Complexity of SAT

- SAT: 2^n
- k-SAT: $2^{n(1-O(1/k))}$
- 3-SAT: 1.308^n
- 2-SAT: $O(m)$
- 1-SAT: $O(m)$