GEMS OF TCS

HEURISTIC ALGORITHMS

Sasha Golovnev
Semptember 27, 2021
HEURISTIC ALGORITHMS

• When exact algorithms are too slow, and approximate algorithm are not accurate enough
HEURISTIC ALGORITHMS

• When exact algorithms are too slow, and approximate algorithm are not accurate enough
• We can use heuristic algorithms
Heuristic Algorithms

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient
HEURISTIC ALGORITHMS

• When exact algorithms are too slow, and approximate algorithm are not accurate enough
• We can use heuristic algorithms
• Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient
• Some heuristic algorithms are fast but not guaranteed to find optimal solutions
HEURISTIC ALGORITHMS

• When exact algorithms are too slow, and approximate algorithm are not accurate enough
• We can use heuristic algorithms
• Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient
• Some heuristic algorithms are fast but not guaranteed to find optimal solutions
• Some heuristic algorithms find optimal solutions but not guaranteed to be fast
Traveling Salesman
TRAVELING SALESMAN PROBLEM

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.
Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once.
Nearest Neighbors

• Going to the nearest unvisited node at every iteration?
Nearest Neighbors

- Going to the nearest unvisited node at every iteration?
- Efficient, works reasonably well in practice
Nearest Neighbors

- Going to the nearest unvisited node at every iteration?
- Efficient, works reasonably well in practice
- May produce a cycle that is much worse than an optimal one
NEAREST NEIGHBORS: BAD CASE

• How to fool the nearest neighbors heuristic?
NEAREST NEIGHBORS: BAD CASE

• How to fool the nearest neighbors heuristic?
• Assume that the weights of almost all the edges in the graph are equal to 2
NEAREST NEIGHBORS: BAD CASE

• How to fool the nearest neighbors heuristic?
• Assume that the weights of almost all the edges in the graph are equal to 2
• And we start to construct a cycle:
NEAREST NEIGHBORS: BAD CASE

• How to fool the nearest neighbors heuristic?
• Assume that the weights of almost all the edges in the graph are equal to 2
• And we start to construct a cycle:
NEAREST NEIGHBORS: BAD CASE

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:
Nearest Neighbors: Bad Case

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:
NEAREST NEIGHBORS: BAD CASE

• How to fool the nearest neighbors heuristic?
• Assume that the weights of almost all the edges in the graph are equal to 2
• And we start to construct a cycle:
NEAREST NEIGHBORS: BAD CASE

• How to fool the nearest neighbors heuristic?
• Assume that the weights of almost all the edges in the graph are equal to 2
• And we start to construct a cycle:
SUBOPTIMAL SOLUTION FOR EUCLIDEAN TSP
Suboptimal Solution for Euclidean TSP

OPT ≈ 26.42
Suboptimal Solution for Euclidean TSP

\[\text{OPT} \approx 26.42 \]
Suboptimal Solution for Euclidean TSP

\[\text{OPT} \approx 26.42 \]
Suboptimal Solution for Euclidean TSP

OPT ≈ 26.42
Suboptimal Solution for Euclidean TSP

OPT ≈ 26.42
Suboptimal Solution for Euclidean TSP

OPT ≈ 26.42
NN ≈ 28.33
For Euclidean instances, the resulting cycle is $O(\log n)$-approximate.
LOCAL SEARCH

• \(s \leftarrow \text{some initial solution} \)
• s ← some initial solution
• while it is possible to change 2 edges in s to get a better cycle s′:
LOCAL SEARCH

- $s \leftarrow$ some initial solution
- while it is possible to change 2 edges in s to get a better cycle s':
 - $s \leftarrow s'$
LOCAL SEARCH

• $s \leftarrow$ some initial solution
• while it is possible to change 2 edges in s to get a better cycle s':
 • $s \leftarrow s'$
• return s
Changing two edges in a suboptimal solution:
A suboptimal solution that cannot be improved by changing two edges:
A suboptimal solution that cannot be improved by changing two edges:

Need to allow changing three edges to improve this solution
Local Search

Local Search with parameter d:

- $s \leftarrow$ some initial solution
- while it is possible to change d edges in s to get a better cycle s':
 - $s \leftarrow s'$
- return s

Properties

- Computes a local optimum instead of a global optimum
Properties

- Computes a local optimum instead of a global optimum
- The larger d, the better the resulting solution and the higher is the running time
Performance

• Trade-off between quality and running time of a single iteration
Performance

• Trade-off between quality and running time of a single iteration
• Still, the number of iterations may be exponential and the quality of the found cycle may be poor
Performance

- Trade-off between quality and running time of a single iteration
- Still, the number of iterations may be exponential and the quality of the found cycle may be poor
- But works well in practice
Satisfiability
\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)\]
\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3)\]

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)\]
BACKTRACKING

• Construct a solution piece by piece
Backtracking

• Construct a solution piece by piece
• Backtrack if the current partial solution cannot be extended to a valid solution
EXAMPLE

\[(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)\]
\[(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)\]

\[x_1 = 0\]

\[(x_2 \lor x_3 \lor x_4)(x_2 \lor \neg x_3)(\neg x_2)(x_2 \lor \neg x_4)\]
EXAMPLE

\[
(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)
\]

\[
(x_2 \lor x_3 \lor x_4)(x_2 \lor \neg x_3)(\neg x_2)(x_2 \lor \neg x_4)
\]

\[
(x_3 \lor x_4)(\neg x_3)(\neg x_4)
\]

\[
x_1 = 0
\]

\[
x_2 = 0
\]
\[(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)\]

Example:

- When $x_1 = 0$:
 \[(x_2 \lor x_3 \lor x_4)(x_2 \lor \neg x_3)(\neg x_2)(x_2 \lor \neg x_4)\]

- When $x_2 = 0$:
 \[(x_3 \lor x_4)(\neg x_3)(\neg x_4)\]

- When $x_3 = 0$:
 \[(x_4)(\neg x_4)\]
Example

\[(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)\]

\[x_1 = 0\]

\[(x_2 \lor x_3 \lor x_4)(x_2 \lor \neg x_3)(\neg x_2)(x_2 \lor \neg x_4)\]

\[x_2 = 0\]

\[(x_3 \lor x_4)(\neg x_3)(\neg x_4)\]

\[x_3 = 0\]

\[(x_4)(\neg x_4)\]

\[x_4 = 0\]

\[()\]
\[(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)\]

\[
\begin{align*}
& x_1 = 0 \\
& (x_2 \lor x_3 \lor x_4)(x_2 \lor \neg x_3)(\neg x_2)(x_2 \lor \neg x_4) \\
& x_2 = 0 \\
& (x_3 \lor x_4)(\neg x_3)(\neg x_4) \\
& x_3 = 0 \\
& (x_4)(\neg x_4) \\
& x_4 = 0 \quad x_4 = 1 \\
& () \quad ()
\end{align*}
\]
\[(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)\]

Example

- **If** $x_1 = 0$
 - \[(x_2 \lor x_3 \lor x_4)(x_2 \lor \neg x_3)(\neg x_2)(x_2 \lor \neg x_4)\]
 - **If** $x_2 = 0$
 - \[(x_3 \lor x_4)(\neg x_3)(\neg x_4)\]
 - **If** $x_3 = 0$
 - \[() \lor x_4\]
 - **If** $x_3 = 1$
 - \[() \lor \neg x_4\]
 - **If** $x_2 = 0$
 - \[(x_3 \lor x_4)(\neg x_3)(\neg x_4)\]
 - **If** $x_3 = 0$
 - \[() \lor x_4\]
 - **If** $x_3 = 1$
 - \[() \lor \neg x_4\]

- **If** $x_4 = 0$
 - \[() \lor ()\]
- **If** $x_4 = 1$
 - \[() \lor ()\]
\[(x_1 \lor x_2 \lor x_3 \lor x_4)(\neg x_1)(x_1 \lor x_2 \lor \neg x_3)(x_1 \lor \neg x_2)(x_2 \lor \neg x_4)\]
EXAMPLE

\[(x_1 \lor x_2 \lor x_3 \lor x_4) (\neg x_1) (x_1 \lor x_2 \lor \neg x_3) (x_1 \lor \neg x_2) (x_2 \lor \neg x_4)\]

\[x_1 = 0\]

\[(x_2 \lor x_3 \lor x_4) (x_2 \lor \neg x_3) (\neg x_2) (x_2 \lor \neg x_4)\]

\[x_2 = 0\]

\[(x_3 \lor x_4) (\neg x_3) (\neg x_4)\]

\[x_3 = 0\]

\[(x_4) (\neg x_4)\]

\[x_4 = 0\]

\[
\]

\[x_4 = 1\]

\[
\]

\[x_4 = 1\]

\[
\]

\[x_1 = 1\]

\[(x_2 \lor \neg x_4)\]

\[x_2 = 1\]

\[
\]

\[x_2 = 1\]

\[
\]
BACKTRACKING ALGORITHM

• SolveSAT\((F) \):
 • if \(F \) has no clauses:
 return “sat”
 • if \(F \) contains an empty clause:
 return “unsat”
BACKTRACKING ALGORITHM

• SolveSAT(F):
 • if F has no clauses:
 return “sat”
 • if F contains an empty clause:
 return “unsat”
 • x ← unassigned variable of F
BACKTRACKING ALGORITHM

- **SolveSAT(\(F\)):**
 - if \(F\) has no clauses: return “sat”
 - if \(F\) contains an empty clause: return “unsat”
 - \(x \leftarrow\) unassigned variable of \(F\)
 - if SolveSAT(\(F[x \leftarrow 0]\)) = “sat”: return “sat”
Backtracking Algorithm

• SolveSAT(F):
 • if F has no clauses:
 return “sat”
 • if F contains an empty clause:
 return “unsat”
 • x ← unassigned variable of F
 • if SolveSAT(F[x ← 0]) = “sat”:
 return “sat”
 • if SolveSAT(F[x ← 1]) = “sat”:
 return “sat”
Backtracking Algorithm

- **SolveSAT(F):**
 - if F has no clauses:
 return “sat”
 - if F contains an empty clause:
 return “unsat”
 - $x \leftarrow$ unassigned variable of F
 - if SolveSAT($F[x \leftarrow 0]$) = “sat”:
 return “sat”
 - if SolveSAT($F[x \leftarrow 1]$) = “sat”:
 return “sat”
 - return “unsat”
Thus, instead of considering all 2^n branches of the recursion tree, we track carefully each branch.
Thus, instead of considering all 2^n branches of the recursion tree, we track carefully each branch.

When we realize that a branch is dead (cannot be extended to a solution), we immediately cut it.
SAT SOLVERS

• Backtracking is used in many state-of-the-art SAT-solvers
SAT Solvers

- Backtracking is used in many state-of-the-art SAT-solvers.
- SAT-solvers use tricky heuristics to choose a variable to branch on, simplify a formula before branching, and use efficient data structures.

Another commonly used technique is local search.
SAT Solvers

• Backtracking is used in many state-of-the-art SAT-solvers
• SAT-solvers use tricky heuristics to choose a variable to branch on, simplify a formula before branching, and use efficient data structures
• Another commonly used technique is local search
Applications
Wow! — Section 7.2.2.2 has turned out to be the longest section, by far, in *The Art of Computer Programming*. The SAT problem is evidently a “killer app,” because it is key to the solution of so many problems. Consequently I can only hope that my lengthy treatment does not also kill off my faithful readers!

Donald Knuth
CONFERENCE, COMPETITION, JOURNAL

• Annual SAT Conference (since 1996):
 http://satisfiability.org
• Annual SAT Conference (since 1996): http://satisfiability.org
• Annual SAT Solving competitions (since 2002): http://www.satcompetition.org/
Conference, Competition, Journal

- Annual SAT Conference (since 1996): http://satisfiability.org
- Annual SAT Solving competitions (since 2002): http://www.satcompetition.org/
- Journal on Satisfiability, Boolean Modeling and Computation: http://jsatjournal.org/
Two-hundred-terabyte maths proof is largest ever

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016
MATHEMATICS

Geometry

Computer Search Settles 90-Year-Old Math Problem

By translating Keller’s conjecture into a computer-friendly search for a type of graph, researchers have finally resolved a problem about covering spaces with tiles.
from pycosat import solve

clauses = [[-1, -2, -3], [1, -2], [2, -3], [3, -1], [1, 2, 3]]

print(solve(clauses))
print(solve(clauses[1:]))
from pycosat import solve

clauses = [[-1, -2, -3], [1, -2], [2, -3], [3, -1], [1, 2, 3]]

print(solve(clauses))
print(solve(clauses[1:]))

UNSAT
[1, 2, 3]
Is it possible to place n queens on an $n \times n$ board such that no two of them attack each other?
Examples
ENCODING AS SAT

• n^2 0/1-variables: for $0 \leq i, j < n$, $x_{ij} = 1$ iff queen is placed into cell (i, j)
ENCODING AS SAT

- \(n^2 \) 0/1-variables: for \(0 \leq i, j < n \), \(x_{ij} = 1 \) iff queen is placed into cell \((i, j)\)
- For \(0 \leq i < n \), \(i \)th row contains \(\geq 1 \) queen:
 \((x_{i0} = 1 \text{ or } x_{i2} = 1 \text{ or } \ldots \text{ or } x_{i(n-1)} = 1) \).
ENCODING AS SAT

• n^2 0/1-variables: for $0 \leq i, j < n$, $x_{ij} = 1$ iff
 queen is placed into cell (i, j)
• For $0 \leq i < n$, ith row contains ≥ 1 queen:

 $$\left(x_{i0} = 1 \text{ or } x_{i2} = 1 \text{ or } \ldots \text{ or } x_{i(n-1)} = 1 \right).$$
• For $0 \leq i < n$, ith row contains ≤ 1 queen:
 $$\forall 0 \leq j_1 \neq j_2 < n: \ (x_{ij_1} = 0 \text{ or } x_{ij_2} = 0).$$
ENCODING AS SAT

- \(n^2 \) 0/1-variables: for \(0 \leq i, j < n \), \(x_{ij} = 1 \) iff queen is placed into cell \((i, j)\)
- For \(0 \leq i < n \), \(i \)th row contains \(\geq 1 \) queen:
 \[(x_{i0} = 1 \text{ or } x_{i2} = 1 \text{ or } \ldots \text{ or } x_{i(n-1)} = 1) \].
- For \(0 \leq i < n \), \(i \)th row contains \(\leq 1 \) queen:
 \[\forall 0 \leq j_1 \neq j_2 < n : (x_{ij_1} = 0 \text{ or } x_{ij_2} = 0) \].
- For \(0 \leq j < n \), \(j \)th column contains \(\leq 1 \) queen:
 \[\forall 0 \leq i_1 \neq i_2 < n : (x_{i_1j} = 0 \text{ or } x_{i_2j} = 0) \].
ENCODING AS SAT

- n^2 0/1-variables: for $0 \leq i, j < n$, $x_{ij} = 1$ iff queen is placed into cell (i, j)
- For $0 \leq i < n$, ith row contains ≥ 1 queen:
 \[(x_{i0} = 1 \text{ or } x_{i2} = 1 \text{ or } \ldots \text{ or } x_{i(n−1)} = 1).\]
- For $0 \leq i < n$, ith row contains ≤ 1 queen:
 \[\forall 0 \leq j_1 \neq j_2 < n: (x_{ij_1} = 0 \text{ or } x_{ij_2} = 0).\]
- For $0 \leq j < n$, jth column contains ≤ 1 queen:
 \[\forall 0 \leq i_1 \neq i_2 < n: (x_{i_1j} = 0 \text{ or } x_{i_2j} = 0).\]
- For each pair $(i_1, j_1), (i_2, j_2)$ on diagonal:
 \[(x_{i_1j_1} = 0 \text{ or } x_{i_2j_2} = 0).\]
from itertools import combinations, product
from pycosat import solve

n = 10
clauses = []

converts a pair of integers into a unique integer
def varnum(i, j):
 assert i in range(n) and j in range(n)
 return i * n + j + 1

each row contains at least one queen
for i in range(n):
 clauses.append([varnum(i, j) for j in range(n)])

each row contains at most one queen
for i in range(n):
 for j1, j2 in combinations(range(n), 2):
 clauses.append([-varnum(i, j1), -varnum(i, j2)])

each column contains at most one queen
for j in range(n):
 for i1, i2 in combinations(range(n), 2):
 clauses.append([-varnum(i1, j), -varnum(i2, j)])

no two queens stay on the same diagonal
for i1, j1, i2, j2 in product(range(n), repeat=4):
 if i1 == i2:
 continue
 if abs(i1 - i2) == abs(j1 - j2):
 clauses.append([-varnum(i1, j1), -varnum(i2, j2)])

assignment = solve(clauses)
for i, j in product(range(n), repeat=2):
 if assignment[varnum(i, j) - 1] > 0:
 print(j, end=' ')