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Millenium Prize Problem
Clay Mathematics Institute: $1M prize for
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• The “hardest” problems in NP

• If any NP-complete problem can be solved in
polynomial time, then all of NP can be solved
in polynomial time

• If one NP-complete problem cannot be solved
in polynomial time, then all NP-complete
problems cannot be solved in polynomial time

• Later we’ll show NP-complete problems exist!
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Distance with full tank 300 mi.
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• “Greedy” algorithm

• Runs in linear time O(n), where n is the size of
the input (# of gas stations)
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Traveling Salesman Problem
(TSP)



TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once
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STATUS

• Classical optimization problem with
countless number of real life applications
(we’ll see soon)

• No polynomial time algorithms known
• The best known algorithm runs in time 2n
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DELIVERING GOODS

Need to visit several
points. What is the op-
timal order of visiting
them?
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DRILLING A CIRCUIT BOARD

https://developers.google.com/optimization/routing/tsp/tsp
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PROCESSING COMPONENTS

There are n mechanical
components to
be processed on a complex
machine. After processing
the i-th component, it takes
tij units of time to reconfigure the machine so
that it is able to process the j-th component.
What is the minimum processing cost?



EUCLIDEAN TSP

• Euclidean TSP: instead of a complete graph,
the input consists of n points
p1 = (x1, y1), . . . , pn = (xn, yn) on the plane

• Weights are given implicitly:

d(pi,pj) =
√

(xi − xj)2 + (yi − yj)2

• Weights are symmetric: d(pi,pj) = d(pj,pi)
• Weights satisfy the triangle inequality:
d(pi,pj) ≤ d(pi,pk) + d(pk,pj)
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• Finding the best permutation is easy:
simply iterate through all of them and
select the best one

• But the number of permutations
of n objects is n!
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n!: GROWTH RATE

n n!

5 120
8 40320
10 3628800
13 6227020800
20 2432902008176640000
30 265252859812191058636308480000000



Satisfiability Problem (SAT)
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APPLICATIONS OF SAT

• Software Engineering

• Chip testing

• Circuit design

• Automatic theorem provers

• Image analysis

• . . .



k-SAT

ϕ(x1, . . . , xn) =(x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧
. . . ∧

(x2 ∨ ¬x3 ∨ . . . ∨ x8)

ϕ is satisfiable if

∃x ∈ {0, 1}n : ϕ(x) = 1 .

Otherwise, ϕ is unsatisfiable

k-SAT is SAT where clause length ≤k
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• Cook-Levin Theorem [Coo71, Lev73]: SAT can
model non-deterministic Turing machine:
SAT is NP-complete

• 3-SAT is NP-complete

• 2-SAT is in P
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The SAT game
http://bit.ly/sat-game
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