Gems of TCS

Easy and Hard Problems

Sasha Golovnev
August 24, 2021

Theoretical Computer Science

Theoretical Computer Science

Mathematical
logic

Theoretical Computer Science

Mathematical
Computability
logic
theory

Theoretical Computer Science

Mathematical
logic

Computability
theory

Information theory

Theoretical Computer Science

Theoretical Computer Science

Computability
theory
$P=N P ?$

Computational complexity

Information theory

Theoretical Computer Science

ロロロロロロ
Computability theory

Computational complexity

Information theory

Cryptography

Theoretical Computer Science

MAMV日V
Computability theory

$$
P=N P ?
$$

Computational complexity

Information theory

Algorithms

Theoretical Computer Science

Theoretical Computer Science

This Course

- Theoretical/Mathematical viewpoint

This Course

- Theoretical/Mathematical viewpoint
- Topic overview

This Course

- Theoretical/Mathematical viewpoint
- Topic overview
- Algorithms

This Course

- Theoretical/Mathematical viewpoint
- Topic overview
- Algorithms
- Computational Complexity

This Course

- Theoretical/Mathematical viewpoint
- Topic overview
- Algorithms
- Computational Complexity
- Cryptography

This Course

- Theoretical/Mathematical viewpoint
- Topic overview
- Algorithms
- Computational Complexity
- Cryptography
- Learning

Administrative Info

- Classes: MW 12:30pm-1:45pm, Walsh 396

Administrative Info

- Classes: MW 12:30pm-1:45pm, Walsh 396
- Office Hours: M 2:00pm-3:00pm, SMH 354

ADMINISTRATIVE INFO

- Classes: MW 12:30pm-1:45pm, Walsh 396
- Office Hours: M 2:00pm-3:00pm, SMH 354
- Prerequisites: Algorithms or Theory of Computation, a Programming Language

ADMINISTRATIVE INFO

- Classes: MW 12:30pm-1:45pm, Walsh 396
- Office Hours: M 2:00pm-3:00pm, SMH 354
- Prerequisites: Algorithms or Theory of Computation, a Programming Language
- Webpage: https://golovnev.org/gradgems

ADMINISTRATIVE INFO

- Classes: MW 12:30pm-1:45pm, Walsh 396
- Office Hours: M 2:00pm-3:00pm, SMH 354
- Prerequisites: Algorithms or Theory of Computation, a Programming Language
- Webpage: https://golovnev.org/gradgems
- Grading: 5-6 Problem Sets

ADMINISTRATIVE INFO

- Classes: MW 12:30pm-1:45pm, Walsh 396
- Office Hours: M 2:00pm-3:00pm, SMH 354
- Prerequisites: Algorithms or Theory of Computation, a Programming Language
- Webpage: https://golovnev.org/gradgems
- Grading: 5-6 Problem Sets
- email: alexgolovnev+gems@gmail.com

Course Begins

- Running time of an algorithm

Course Begins

- Running time of an algorithm
- $100 n^{2}$ vs $n^{3} / 10$

Course Begins

- Running time of an algorithm
- $100 n^{2}$ vs $n^{3} / 10$
- $100 n^{2}$ vs $2^{n} / 100$

Course Begins

- Running time of an algorithm
- $100 n^{2}$ vs $n^{3} / 10$
- $100 n^{2}$ vs $2^{n} / 100$
- Complexity class P: Problems whose solution can be found efficiently

Course Begins

- Running time of an algorithm
- $100 n^{2}$ vs $n^{3} / 10$
- $100 n^{2}$ vs $2^{n} / 100$
- Complexity class P: Problems whose solution can be found efficiently
- Complexity class NP: Problems whose solution can be verified efficiently

The main open problem in Computer Science

Is P equal to NP?

The main open problem in Computer Science

Is P equal to NP?

Millenium Prize Problem
Clay Mathematics Institute: \$1M prize for solving the problem

- If $\mathrm{P}=\mathrm{NP}$, then all NP-problems can be solved in polynomial time.
- If $\mathrm{P}=\mathrm{NP}$, then all NP-problems can be solved in polynomial time.
- If $\mathrm{P} \neq \mathrm{NP}$, then there exist NP -problems that cannot be solved in polynomial time.

NP-COMPLETE PROBLEMS

- The "hardest" problems in NP

NP-COMPLETE PROBLEMS

- The "hardest" problems in NP
- If any NP-complete problem can be solved in polynomial time, then all of NP can be solved in polynomial time

NP-COMPLETE PROBLEMS

- The "hardest" problems in NP
- If any NP-complete problem can be solved in polynomial time, then all of NP can be solved in polynomial time
- If one NP-complete problem cannot be solved in polynomial time, then all NP-complete problems cannot be solved in polynomial time

NP-COMPLETE PROBLEMS

- The "hardest" problems in NP
- If any NP-complete problem can be solved in polynomial time, then all of NP can be solved in polynomial time
- If one NP-complete problem cannot be solved in polynomial time, then all NP-complete problems cannot be solved in polynomial time
- Later we'll show NP-complete problems exist!

Car Fueling

Car Fueling

Distance with full tank 300 mi .

Minimize the number of stops at gas stations

Break http://bit.ly/car-fueling

EXAMPLE

Distance with full tank 300 mi.

Minimize the number of stops at gas stations

Car Fueling. Solution

- "Greedy" algorithm

Car Fueling. Solution

- "Greedy" algorithm
- Runs in linear time $O(n)$, where n is the size of the input (\# of gas stations)

Car Fueling. Solution

- "Greedy" algorithm
- Runs in linear time $O(n)$, where n is the size of the input (\# of gas stations)
- Easy problem

Traveling Salesman Problem (TSP)

Traveling Salesman Problem

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

Traveling Salesman Problem

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 15

Traveling Salesman Problem

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 11

Traveling Salesman Problem

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 9

Status

- Classical optimization problem with countless number of real life applications (we'll see soon)

Status

- Classical optimization problem with countless number of real life applications (we'll see soon)
- No polynomial time algorithms known

Status

- Classical optimization problem with countless number of real life applications (we'll see soon)
- No polynomial time algorithms known
- The best known algorithm runs in time 2^{n}

Delivering Goods

Need to visit several points. What is the optimal order of visiting them?

Traveling

Traveling

Traveling

-

-

Traveling

Drilling a Circuit Board

https://developers.google.com/optimization/routing/tsp/tsp

Drilling a Circuit Board

https://developers.google.com/optimization/routing/tsp/tsp

Drilling a Circuit Board

https://developers.google.com/optimization/routing/tsp/tsp

Processing Components

There are n mechanical components to be processed on a complex machine. After processing the i-th component, it takes $t_{i j}$ units of time to reconfigure the machine so that it is able to process the j-th component. What is the minimum processing cost?

Euclidean TSP

- Euclidean TSP: instead of a complete graph, the input consists of n points

$$
p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right) \text { on the plane }
$$

Euclidean TSP

- Euclidean TSP: instead of a complete graph, the input consists of n points $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ on the plane
- Weights are given implicitly:

$$
d\left(p_{i}, p_{j}\right)=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}
$$

Euclidean TSP

- Euclidean TSP: instead of a complete graph, the input consists of n points $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ on the plane
- Weights are given implicitly:

$$
d\left(p_{i}, p_{j}\right)=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}
$$

- Weights are symmetric: $d\left(p_{i}, p_{j}\right)=d\left(p_{j}, p_{i}\right)$

Euclidean TSP

- Euclidean TSP: instead of a complete graph, the input consists of n points $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$ on the plane
- Weights are given implicitly:

$$
d\left(p_{i}, p_{j}\right)=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}
$$

- Weights are symmetric: $d\left(p_{i}, p_{j}\right)=d\left(p_{j}, p_{i}\right)$
- Weights satisfy the triangle inequality: $d\left(p_{i}, p_{j}\right) \leq d\left(p_{i}, p_{k}\right)+d\left(p_{k}, p_{j}\right)$

Brute Force Search

- Finding the best permutation is easy: simply iterate through all of them and select the best one

Brute Force Search

- Finding the best permutation is easy: simply iterate through all of them and select the best one
- But the number of permutations of n objects is n !

n!: Growth Rate

$n \quad n$!
5120
840320
103628800
136227020800
202432902008176640000
30265252859812191058636308480000000

Satisfiability Problem (SAT)

SAT

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)
$$

SAT

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)
$$

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)$

Applications of SAT

- Software Engineering
- Chip testing
- Circuit design
- Automatic theorem provers
- Image analysis

k-SAT

$$
\begin{aligned}
\phi\left(x_{1}, \ldots, x_{n}\right)= & \left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \\
\ldots & \wedge \\
& \left(x_{2} \vee \neg x_{3} \vee \ldots \vee x_{8}\right)
\end{aligned}
$$

k-SAT

$$
\begin{array}{r}
\phi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \\
\ldots \\
\left(x_{2} \vee \neg x_{3} \vee \ldots \vee x_{8}\right)
\end{array}
$$

ϕ is satisfiable if

$$
\exists x \in\{0,1\}^{n}: \phi(x)=1 .
$$

Otherwise, ϕ is unsatisfiable

k-SAT

$$
\begin{aligned}
\phi\left(x_{1}, \ldots, x_{n}\right)= & \left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \\
\ldots & \wedge \\
& \left(x_{2} \vee \neg x_{3} \vee \ldots \vee x_{8}\right)
\end{aligned}
$$

ϕ is satisfiable if

$$
\exists x \in\{0,1\}^{n}: \phi(x)=1 .
$$

Otherwise, ϕ is unsatisfiable
k-SAT is SAT where clause length $\leq k$

k-SAT. EXAMPLES

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$

k-SAT. EXAMPLES

$$
\begin{gathered}
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \\
\left(x_{1}\right) \wedge\left(\neg x_{2}\right) \wedge\left(x_{3}\right) \wedge\left(\neg x_{1}\right)
\end{gathered}
$$

Queen of NP-COMPLETE PROBLEMS

- Cook-Levin Theorem [Coo71, Lev73]: SAT can model non-deterministic Turing machine: SAT is NP-complete

Queen of NP-complete problems

- Cook-Levin Theorem [Coo71, Lev73]: SAT can model non-deterministic Turing machine: SAT is NP-complete
- 3-SAT is NP-complete

Queen of NP-complete problems

- Cook-Levin Theorem [Coo71, Lev73]: SAT can model non-deterministic Turing machine: SAT is NP-complete
- 3-SAT is NP-complete
- 2-SAT is in P

Complexity of SAT

$$
\begin{aligned}
& \text { 2-SAT } \\
& \text { 1-SAT }
\end{aligned}
$$

Complexity of SAT

$$
\begin{gathered}
\text { SAT } \\
\text { R-SAT } \\
\vdots \\
3-S A T \\
\text { 2-SAT } \\
\text { 1-SAT }
\end{gathered}
$$

The SAT game

 http://bit.ly/sat-game