
GEMS OF TCS
EASY AND HARD PROBLEMS

Sasha Golovnev
August 24, 2021

THEORETICAL COMPUTER SCIENCE

THEORETICAL COMPUTER SCIENCE

P =⇒ Q
Mathematical

logic

THEORETICAL COMPUTER SCIENCE

P =⇒ Q
Mathematical

logic
Computability

theory

THEORETICAL COMPUTER SCIENCE

P =⇒ Q
Mathematical

logic
Computability

theory
Information
theory

THEORETICAL COMPUTER SCIENCE

P =⇒ Q
Mathematical

logic

Learning,
neural nets

Computability
theory

Information
theory

THEORETICAL COMPUTER SCIENCE

P =⇒ Q
Mathematical

logic

Learning,
neural nets

Computability
theory

P = NP?
Computational
complexity

Information
theory

THEORETICAL COMPUTER SCIENCE

P =⇒ Q
Mathematical

logic

Learning,
neural nets

Computability
theory

P = NP?
Computational
complexity

Information
theory

Cryptography

THEORETICAL COMPUTER SCIENCE

P =⇒ Q
Mathematical

logic

Learning,
neural nets

Quantum
Algorithms

Computability
theory

P = NP?
Computational
complexity

Information
theory

Cryptography

THEORETICAL COMPUTER SCIENCE

P =⇒ Q
Mathematical

logic

Learning,
neural nets

Quantum
Algorithms

Computability
theory

P = NP?
Computational
complexity

Machine
learning

Information
theory

Cryptography

THEORETICAL COMPUTER SCIENCE

P =⇒ Q
Mathematical

logic

Learning,
neural nets

Quantum
Algorithms

Computability
theory

P = NP?
Computational
complexity

Machine
learning

Information
theory

Cryptography

Data Science

THIS COURSE

• Theoretical/Mathematical viewpoint

• Topic overview
• Algorithms
• Computational Complexity
• Cryptography
• Learning

THIS COURSE

• Theoretical/Mathematical viewpoint

• Topic overview

• Algorithms
• Computational Complexity
• Cryptography
• Learning

THIS COURSE

• Theoretical/Mathematical viewpoint

• Topic overview
• Algorithms

• Computational Complexity
• Cryptography
• Learning

THIS COURSE

• Theoretical/Mathematical viewpoint

• Topic overview
• Algorithms
• Computational Complexity

• Cryptography
• Learning

THIS COURSE

• Theoretical/Mathematical viewpoint

• Topic overview
• Algorithms
• Computational Complexity
• Cryptography

• Learning

THIS COURSE

• Theoretical/Mathematical viewpoint

• Topic overview
• Algorithms
• Computational Complexity
• Cryptography
• Learning

ADMINISTRATIVE INFO

• Classes: MW 12:30pm–1:45pm, Walsh 396

• Office Hours: M 2:00pm–3:00pm, SMH 354

• Prerequisites: Algorithms or Theory of
Computation, a Programming Language

• Webpage: https://golovnev.org/gradgems

• Grading: 5-6 Problem Sets

• email: alexgolovnev+gems@gmail.com

https://golovnev.org/gradgems

ADMINISTRATIVE INFO

• Classes: MW 12:30pm–1:45pm, Walsh 396

• Office Hours: M 2:00pm–3:00pm, SMH 354

• Prerequisites: Algorithms or Theory of
Computation, a Programming Language

• Webpage: https://golovnev.org/gradgems

• Grading: 5-6 Problem Sets

• email: alexgolovnev+gems@gmail.com

https://golovnev.org/gradgems

ADMINISTRATIVE INFO

• Classes: MW 12:30pm–1:45pm, Walsh 396

• Office Hours: M 2:00pm–3:00pm, SMH 354

• Prerequisites: Algorithms or Theory of
Computation, a Programming Language

• Webpage: https://golovnev.org/gradgems

• Grading: 5-6 Problem Sets

• email: alexgolovnev+gems@gmail.com

https://golovnev.org/gradgems

ADMINISTRATIVE INFO

• Classes: MW 12:30pm–1:45pm, Walsh 396

• Office Hours: M 2:00pm–3:00pm, SMH 354

• Prerequisites: Algorithms or Theory of
Computation, a Programming Language

• Webpage: https://golovnev.org/gradgems

• Grading: 5-6 Problem Sets

• email: alexgolovnev+gems@gmail.com

https://golovnev.org/gradgems

ADMINISTRATIVE INFO

• Classes: MW 12:30pm–1:45pm, Walsh 396

• Office Hours: M 2:00pm–3:00pm, SMH 354

• Prerequisites: Algorithms or Theory of
Computation, a Programming Language

• Webpage: https://golovnev.org/gradgems

• Grading: 5-6 Problem Sets

• email: alexgolovnev+gems@gmail.com

https://golovnev.org/gradgems

ADMINISTRATIVE INFO

• Classes: MW 12:30pm–1:45pm, Walsh 396

• Office Hours: M 2:00pm–3:00pm, SMH 354

• Prerequisites: Algorithms or Theory of
Computation, a Programming Language

• Webpage: https://golovnev.org/gradgems

• Grading: 5-6 Problem Sets

• email: alexgolovnev+gems@gmail.com

https://golovnev.org/gradgems

COURSE BEGINS

• Running time of an algorithm

• 100n2 vs n3/10
• 100n2 vs 2n/100

• Complexity class P: Problems whose solution
can be found efficiently

• Complexity class NP: Problems whose solution
can be verified efficiently

COURSE BEGINS

• Running time of an algorithm
• 100n2 vs n3/10

• 100n2 vs 2n/100
• Complexity class P: Problems whose solution
can be found efficiently

• Complexity class NP: Problems whose solution
can be verified efficiently

COURSE BEGINS

• Running time of an algorithm
• 100n2 vs n3/10
• 100n2 vs 2n/100

• Complexity class P: Problems whose solution
can be found efficiently

• Complexity class NP: Problems whose solution
can be verified efficiently

COURSE BEGINS

• Running time of an algorithm
• 100n2 vs n3/10
• 100n2 vs 2n/100

• Complexity class P: Problems whose solution
can be found efficiently

• Complexity class NP: Problems whose solution
can be verified efficiently

COURSE BEGINS

• Running time of an algorithm
• 100n2 vs n3/10
• 100n2 vs 2n/100

• Complexity class P: Problems whose solution
can be found efficiently

• Complexity class NP: Problems whose solution
can be verified efficiently

The main open problem in Computer Science

Is P equal to NP?

Millenium Prize Problem
Clay Mathematics Institute: $1M prize for
solving the problem

The main open problem in Computer Science

Is P equal to NP?

Millenium Prize Problem
Clay Mathematics Institute: $1M prize for
solving the problem

• If P=NP, then all NP-problems can be solved
in polynomial time.

• If P̸=NP, then there exist NP-problems that
cannot be solved in polynomial time.

• If P=NP, then all NP-problems can be solved
in polynomial time.

• If P̸=NP, then there exist NP-problems that
cannot be solved in polynomial time.

NP-COMPLETE PROBLEMS

• The “hardest” problems in NP

• If any NP-complete problem can be solved in
polynomial time, then all of NP can be solved
in polynomial time

• If one NP-complete problem cannot be solved
in polynomial time, then all NP-complete
problems cannot be solved in polynomial time

• Later we’ll show NP-complete problems exist!

NP-COMPLETE PROBLEMS

• The “hardest” problems in NP

• If any NP-complete problem can be solved in
polynomial time, then all of NP can be solved
in polynomial time

• If one NP-complete problem cannot be solved
in polynomial time, then all NP-complete
problems cannot be solved in polynomial time

• Later we’ll show NP-complete problems exist!

NP-COMPLETE PROBLEMS

• The “hardest” problems in NP

• If any NP-complete problem can be solved in
polynomial time, then all of NP can be solved
in polynomial time

• If one NP-complete problem cannot be solved
in polynomial time, then all NP-complete
problems cannot be solved in polynomial time

• Later we’ll show NP-complete problems exist!

NP-COMPLETE PROBLEMS

• The “hardest” problems in NP

• If any NP-complete problem can be solved in
polynomial time, then all of NP can be solved
in polynomial time

• If one NP-complete problem cannot be solved
in polynomial time, then all NP-complete
problems cannot be solved in polynomial time

• Later we’ll show NP-complete problems exist!

Car Fueling

CAR FUELING

A B
0mi. 200 300 550 650 750 1000mi.

Distance with full tank 300 mi.

Minimize the number of stops at gas stations

Break http://bit.ly/car-fueling

http://bit.ly/car-fueling

EXAMPLE

A B
0mi. 200 300 550 650 750 1000mi.

Distance with full tank 300 mi.

Minimize the number of stops at gas stations

CAR FUELING. SOLUTION

• “Greedy” algorithm

• Runs in linear time O(n), where n is the size of
the input (# of gas stations)

• Easy problem

CAR FUELING. SOLUTION

• “Greedy” algorithm

• Runs in linear time O(n), where n is the size of
the input (# of gas stations)

• Easy problem

CAR FUELING. SOLUTION

• “Greedy” algorithm

• Runs in linear time O(n), where n is the size of
the input (# of gas stations)

• Easy problem

Traveling Salesman Problem
(TSP)

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

5

2

4

2

2

1

13

3
3

5

2

4

2

2

1

13

3
3

5

2

4

2

2

1

13

3
3

5

2

4

2

2

1

13

3
3

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

5

2

4

2

2

1

13

3
3

length: 15

5

2

4

2

2

1

13

3
3

5

2

4

2

2

1

13

3
3

5

2

4

2

2

1

13

3
3

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

5

2

4

2

2

1

13

3
3

5

2

4

2

2

1

13

3
3

length: 11

5

2

4

2

2

1

13

3
3

5

2

4

2

2

1

13

3
3

TRAVELING SALESMAN PROBLEM
Given a complete weighted graph, find a cycle
(or a path) of minimum total weight (length)
visiting each node exactly once

5

2

4

2

2

1

13

3
3

5

2

4

2

2

1

13

3
3

5

2

4

2

2

1

13

3
3

length: 9

5

2

4

2

2

1

13

3
3

STATUS

• Classical optimization problem with
countless number of real life applications
(we’ll see soon)

• No polynomial time algorithms known
• The best known algorithm runs in time 2n

STATUS

• Classical optimization problem with
countless number of real life applications
(we’ll see soon)

• No polynomial time algorithms known

• The best known algorithm runs in time 2n

STATUS

• Classical optimization problem with
countless number of real life applications
(we’ll see soon)

• No polynomial time algorithms known
• The best known algorithm runs in time 2n

DELIVERING GOODS

Need to visit several
points. What is the op-
timal order of visiting
them?

TRAVELING

TRAVELING

TRAVELING

TRAVELING

$19

$19$11

$7 $12
$11$11

$7

$7

$19

$20

$15

$20

$15

$18

$15
$19

$11

$19$17

DRILLING A CIRCUIT BOARD

https://developers.google.com/optimization/routing/tsp/tsp

DRILLING A CIRCUIT BOARD

https://developers.google.com/optimization/routing/tsp/tsp

DRILLING A CIRCUIT BOARD

https://developers.google.com/optimization/routing/tsp/tsp

PROCESSING COMPONENTS

There are n mechanical
components to
be processed on a complex
machine. After processing
the i-th component, it takes
tij units of time to reconfigure the machine so
that it is able to process the j-th component.
What is the minimum processing cost?

EUCLIDEAN TSP

• Euclidean TSP: instead of a complete graph,
the input consists of n points
p1 = (x1, y1), . . . , pn = (xn, yn) on the plane

• Weights are given implicitly:

d(pi,pj) =
√

(xi − xj)2 + (yi − yj)2

• Weights are symmetric: d(pi,pj) = d(pj,pi)
• Weights satisfy the triangle inequality:
d(pi,pj) ≤ d(pi,pk) + d(pk,pj)

EUCLIDEAN TSP

• Euclidean TSP: instead of a complete graph,
the input consists of n points
p1 = (x1, y1), . . . , pn = (xn, yn) on the plane

• Weights are given implicitly:

d(pi,pj) =
√

(xi − xj)2 + (yi − yj)2

• Weights are symmetric: d(pi,pj) = d(pj,pi)
• Weights satisfy the triangle inequality:
d(pi,pj) ≤ d(pi,pk) + d(pk,pj)

EUCLIDEAN TSP

• Euclidean TSP: instead of a complete graph,
the input consists of n points
p1 = (x1, y1), . . . , pn = (xn, yn) on the plane

• Weights are given implicitly:

d(pi,pj) =
√

(xi − xj)2 + (yi − yj)2

• Weights are symmetric: d(pi,pj) = d(pj,pi)

• Weights satisfy the triangle inequality:
d(pi,pj) ≤ d(pi,pk) + d(pk,pj)

EUCLIDEAN TSP

• Euclidean TSP: instead of a complete graph,
the input consists of n points
p1 = (x1, y1), . . . , pn = (xn, yn) on the plane

• Weights are given implicitly:

d(pi,pj) =
√

(xi − xj)2 + (yi − yj)2

• Weights are symmetric: d(pi,pj) = d(pj,pi)
• Weights satisfy the triangle inequality:
d(pi,pj) ≤ d(pi,pk) + d(pk,pj)

BRUTE FORCE SEARCH

• Finding the best permutation is easy:
simply iterate through all of them and
select the best one

• But the number of permutations
of n objects is n!

BRUTE FORCE SEARCH

• Finding the best permutation is easy:
simply iterate through all of them and
select the best one

• But the number of permutations
of n objects is n!

n!: GROWTH RATE

n n!

5 120
8 40320
10 3628800
13 6227020800
20 2432902008176640000
30 265252859812191058636308480000000

Satisfiability Problem (SAT)

SAT

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1∨x2∨x3)∧(x1∨¬x2)∧(¬x1∨x3)∧(x2∨¬x3)∧(¬x1∨¬x2∨¬x3)

SAT

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1∨x2∨x3)∧(x1∨¬x2)∧(¬x1∨x3)∧(x2∨¬x3)∧(¬x1∨¬x2∨¬x3)

APPLICATIONS OF SAT

• Software Engineering

• Chip testing

• Circuit design

• Automatic theorem provers

• Image analysis

• . . .

k-SAT

ϕ(x1, . . . , xn) =(x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧
. . . ∧

(x2 ∨ ¬x3 ∨ . . . ∨ x8)

ϕ is satisfiable if

∃x ∈ {0, 1}n : ϕ(x) = 1 .

Otherwise, ϕ is unsatisfiable

k-SAT is SAT where clause length ≤k

k-SAT

ϕ(x1, . . . , xn) =(x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧
. . . ∧

(x2 ∨ ¬x3 ∨ . . . ∨ x8)

ϕ is satisfiable if

∃x ∈ {0, 1}n : ϕ(x) = 1 .

Otherwise, ϕ is unsatisfiable

k-SAT is SAT where clause length ≤k

k-SAT

ϕ(x1, . . . , xn) =(x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧
. . . ∧

(x2 ∨ ¬x3 ∨ . . . ∨ x8)

ϕ is satisfiable if

∃x ∈ {0, 1}n : ϕ(x) = 1 .

Otherwise, ϕ is unsatisfiable

k-SAT is SAT where clause length ≤k

k-SAT. EXAMPLES

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1) ∧ (¬x2) ∧ (x3) ∧ (¬x1)

k-SAT. EXAMPLES

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)

(x1) ∧ (¬x2) ∧ (x3) ∧ (¬x1)

QUEEN OF NP-COMPLETE PROBLEMS

• Cook-Levin Theorem [Coo71, Lev73]: SAT can
model non-deterministic Turing machine:
SAT is NP-complete

• 3-SAT is NP-complete

• 2-SAT is in P

QUEEN OF NP-COMPLETE PROBLEMS

• Cook-Levin Theorem [Coo71, Lev73]: SAT can
model non-deterministic Turing machine:
SAT is NP-complete

• 3-SAT is NP-complete

• 2-SAT is in P

QUEEN OF NP-COMPLETE PROBLEMS

• Cook-Levin Theorem [Coo71, Lev73]: SAT can
model non-deterministic Turing machine:
SAT is NP-complete

• 3-SAT is NP-complete

• 2-SAT is in P

COMPLEXITY OF SAT

P1-SAT
2-SAT

NP3-SAT

...
k-SAT
SAT

P1-SAT
2-SAT

COMPLEXITY OF SAT

P1-SAT
2-SAT

NP3-SAT

...
k-SAT
SAT

P1-SAT
2-SAT

The SAT game
http://bit.ly/sat-game

http://bit.ly/sat-game

