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AVOIDING SCURVY

• Orange costs $1,
grapefruit costs $1;
we have budget of $2/day

• Orange weighs 100gm,
grapefruit weighs 200gm,
we can carry 300gm

• Orange has 100gm of vitamin C,
grapefruit has 150gm of vitamin C,
maximize daily vitamin C intake.
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x+ 2y ≤ 3

x ≥ 0
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AVOIDING SCURVY II

max 2x+ 3y

x+ y ≤ 2
x+ 2y ≤ 2.5

x ≥ 0
y ≥ 0 x

y



Linear programming

Input: A set of linear inequalities Ax ≤ b.
Output: Real solution that optimizes the objec-

tive function.



Integer linear programming

Input: A set of linear inequalities Ax ≤ b.
Output: Integer solution that optimizes the ob-

jective function.



Example

x1 ≥ 0.5
−x1 + 8x2 ≥ 0
−x1 − 8x2 ≥ −8
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LP
Find a real
solution of a system of
linear inequalities

Can be solved
efficiently (Lecture 9)

ILP
Find an integer
solution of a system of
linear inequalities

No polynomial
algorithm known!
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ALGORITHM FOR ILP
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max 2x+ y

4x+ y ≤ 33
3x+ 4y ≤ 29

x ≥ 0
y ≥ 0

x, y ∈ Z
x

y





BRANCHING ON x

Original
OPT≈ 17.1538
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BRANCHING ON x

Original
OPT≈ 17.1538

Prob 1
OPT= 16

Prob 2
OPT= 17

x ≤ 7 x ≥ 8



HEURISTIC ALGORITHMS FOR ILP



Applications



APPLICATIONS

• Scheduling

• Planning

• Networks

• . . .



VERTEX COVERS

• A Vertex Cover of a graph G is a set of
vertices C such that every edge of G is
connected to some vertex in C.

• A Minimum Vertex Cover is a vertex cover of
the smallest size.
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VERTEX COVER AS ILP

• Introduce binary variable for every vertex:
x1, . . . , xn:
• xi = 1 iff xi belongs to Vertex Cover

• ∀i ∈ {1, . . . ,n}, 0 ≤ xi ≤ 1, xi ∈ Z

• min
∑

i xi

• For every edge (u, v) in th graph: xu + xv ≥ 1
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IMPLEMENTATION



N QUEENS

Is it possible to place n queens on an n× n
board such that no two of them attack each
other?



N QUEENS AS ILP
• n2 0/1-variables: for 0 ≤ i, j < n, xij = 1 iff
queen is placed into cell (i, j)

• For 0 ≤ i < n, ith row contains = 1 queen:
n∑
j=1

xij = 1 .

• For 0 ≤ j < n, jth column contains = 1 queen:
n∑
j=1

xij = 1 .

• Each diagonal contains ≤ 1 queen:
n∑
i=1

n∑
j=1 : i−j=k

xij ≤ 1 ;
n∑
i=1

n∑
j=1 : i+j=k

xij ≤ 1
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