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EVERYTHING IS A BIT STRING

• Input to an algorithm is a string

• Algorithm itself is a string

• Every string is an algorithm

• Given input, algorithm
• either eventually outputs some value
• or never halts
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Halting Problem
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HALTING PROBLEM

• Function HALT is defined as follows.

• The first input is algorithm A
• The second input is string x
• HALT(A, x) = 1 if A halts on input x
• HALT(A, x) = 0 if A enters infinite loop on
input x
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APPLICATIONS OF HALTING PROBLEM

• Algorithm for HALT will help to design bug-free
soft (and hardware)

• Algorithm for HALT will (eventually) solve many
mathematical problems
• Goldbach’s conjecture
• Collatz conjecture
• Twin (cousin/sexy) prime conjecture
• Odd perfect number
• . . .
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Clearly, every function can be
computed given sufficient time



Except this is not true



HALTING IS UNDECIDABLE



REMARKS

• Easy to solve for one input and one algorithm

• But impossible to solve for all inputs and
algorithms

• Result holds for all computational models

• All non-trivial properties of algorithms are
undecidable
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COMPILER

• Takes

• String A describing algorithm
• String x describing algorithm’s input

• Outputs A(x)

• Compiler itself is an algorithm, too!
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UNDECIDABLE PROBLEM

• Function Adiag(x) is defined as follows

• If the algorithm x on input x outputs 1, then
Adiag(x) = 0

• If the algorithm x on input x outputs other
value or never halts, then Adiag(x) = 1



UNDECIDABLE PROBLEM

• Function Adiag(x) is defined as follows

• If the algorithm x on input x outputs 1, then
Adiag(x) = 0

• If the algorithm x on input x outputs other
value or never halts, then Adiag(x) = 1



UNDECIDABLE PROBLEM

• Function Adiag(x) is defined as follows

• If the algorithm x on input x outputs 1, then
Adiag(x) = 0

• If the algorithm x on input x outputs other
value or never halts, then Adiag(x) = 1



DIAGONALIZATION



PROOF



REDUCTION FROM DIAG TO HALT

• Assume there exists an algorithm for HALT

• Given input x, we check if the algorithm x halts
on x

• If it doesn’t halt, output 1

• If it halts and outputs 1, output 0

• If it halts and outputs something else, output 1
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