GEMS OF TCS

P VS NP

Sasha Golovnev October 20, 2021

Search Problems

SEARCH PROBLEM

Definition

A search problem is defined by an algorithm C that takes an instance *I* and a candidate solution *S*, and runs in time polynomial in the length of *I*. We say that *S* is a solution to *I* iff C(S, I) = true.

SAT

Example

For SAT, *I* is a Boolean formula, *S* is an assignment of Boolean constants to its variables. The corresponding algorithm *C* checks whether *S* satisfies all clauses of *I*.

CLASS NP

Definition

A search problem is defined by an algorithm C that takes an instance *I* and a candidate solution *S*, and runs in time polynomial in the length of *I*. We say that *S* is a solution to *I* iff C(S, I) = true.

CLASS NP

Definition

A search problem is defined by an algorithm C that takes an instance *I* and a candidate solution *S*, and runs in time polynomial in the length of *I*. We say that *S* is a solution to *I* iff C(S, I) = true.

Definition

NP is the class of all search problems.

• NP stands for "non-deterministic polynomial time": one can guess a solution, and then verify its correctness in polynomial time

• NP stands for "non-deterministic polynomial time": one can guess a solution, and then verify its correctness in polynomial time

 In other words, the class NP contains all problems whose solutions can be efficiently verified

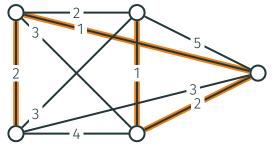
CLASS P

Definition

P is the class of all search problems that can be solved in polynomial time.

TRAVELING SALESMAN PROBLEM

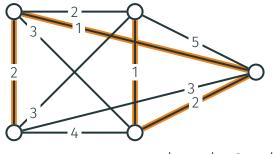
Given a complete weighted graph, find a path of minimum total weight (length) visiting each node exactly once



length: 6

TRAVELING SALESMAN PROBLEM

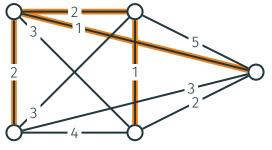
Given a complete weighted graph and a budget *b*, find a path of total weight (length) ≤ *b* visiting each node exactly once



length: $6 \le b$

MINIMUM SPANNING TREE

Given a complete weighted graph and a budget b, connect all vertices by n - 1 edges of minimum total weight (length)



length: 6

MST

Given n cities, connect them by (n - 1) roads of minimal total length

MST

Given n cities, connect them by (n - 1) roads of minimal total length

Can be solved efficiently

MST

Given n cities, connect them by (n - 1) roads of minimal total length

TSP

Given *n* cities, connect them in a path of minimal total length

Can be solved efficiently

MST

Given n cities, connect them by (n - 1) roads of minimal total length

TSP

Given *n* cities, connect them in a path of minimal total length

Can be solved efficiently

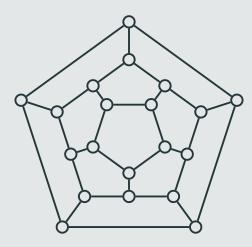
No polynomial algorithm known!

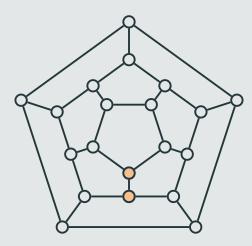
Longest Path

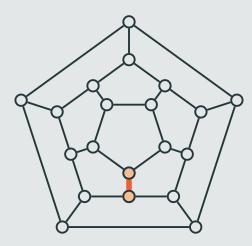
Longest path

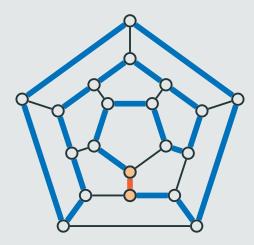
Input: A weighted graph, two vertices s, *t*, and a budget *b*.

Output: A simple path (containing no repeated vertices) of total length at least *b*.









Shortest path

Find a simple path from s to t of total length at most b

Shortest path

Find a simple path from s to t of total length at most b

Can be solved efficiently

Shortest path

Find a simple path from s to t of total length at most b

Can be solved efficiently

Longest path

Find a simple path from s to t of total length at least b

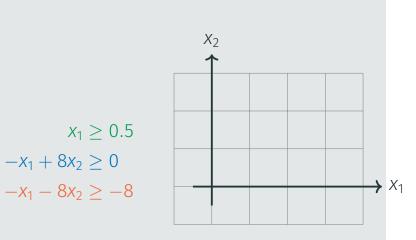
Shortest path	Longest path
Find a simple path from	Find a simple path from
s to t of total length at	s to t of total length at
most b	least b
Can be solved	No polynomial
efficiently	algorithm known!

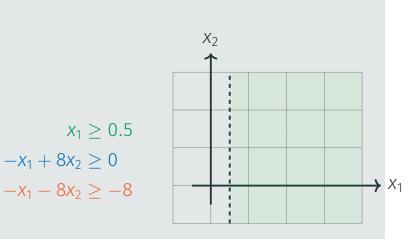
INTEGER LINEAR PROGRAMMING PROBLEM

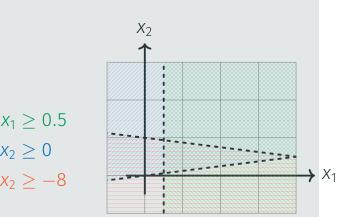
Integer linear programming

Input: A set of linear inequalities $Ax \le b$. Output: Integer solution.

 $x_1 \ge 0.5$ $-x_1 + 8x_2 \ge 0$ $-x_1 - 8x_2 \ge -8$







 $x_1 \ge 0.5$ $-x_1+8x_2\geq 0$ $-x_1 - 8x_2 \ge -8$

LP

Find a real solution of a system of linear inequalities

LP

Find a real solution of a system of linear inequalities

Can be solved efficiently

LP

Find a real solution of a system of linear inequalities

ILP

Find an integer solution of a system of linear inequalities

Can be solved efficiently

L	D
L	Γ

Find a real solution of a system of linear inequalities ILP

Find an integer solution of a system of linear inequalities

Can be solved efficiently

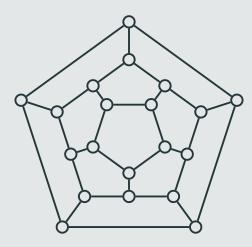
No polynomial algorithm known!

INDEPENDENT SET PROBLEM

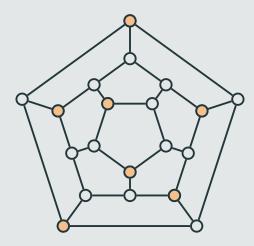
Independent set

Input: A graph and a budget b.Output: A subset of vertices of size at least b such that no two of them are adjacent.

Example

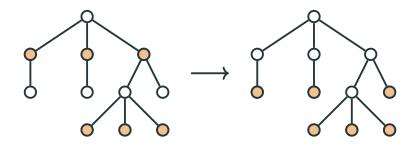


Example



INDEPENDENT SETS IN A TREE

A maximum independent set in a tree can be found by a simple greedy algorithm: it is safe to take into a solution all the leaves.



Independent set in a tree

Find an independent set of size at least *b* in a given tree Independent set in a tree

Find an independent set of size at least *b* in a given tree

Can be solved efficiently

Independent set in a tree

Find an independent set of size at least *b* in a given tree Independent set in a graph

Find an independent set of size at least *b* in a given graph

Can be solved efficiently

Independent set in
a tree

Find an independent set of size at least *b* in a given tree Independent set in a graph

Find an independent set of size at least *b* in a given graph

Can be solved efficiently

No polynomial algorithm known!

It turns out that all these hard problems are in a sense a single hard problem: a polynomial time algorithm for any of these problems can be used to solve all of them in polynomial time!

Problems whose solution can be found efficiently

Problems whose solution can be found efficiently

- MST
- Shortest path
- LP
- IS on trees

Problems whose solution can be found efficiently

Class NP

Problems whose solution can be verified efficiently

- MST
- Shortest path
- LP
- IS on trees

Problems whose solution can be found efficiently

Class NP

Problems whose solution can be verified efficiently

- MST
- Shortest path
- LP
- IS on trees

- TSP
- Longest path
- ILP
- IS on graphs

The main open problem in Computer Science

Is P equal to NP?

The main open problem in Computer Science

Is **P** equal to **NP**?

Millenium Prize Problem

Clay Mathematics Institute: \$1M prize for solving the problem

• If **P**=**NP**, then all search problems can be solved in polynomial time.

• If **P**=**NP**, then all search problems can be solved in polynomial time.

• If $P \neq NP$, then there exist search problems that cannot be solved in polynomial time.

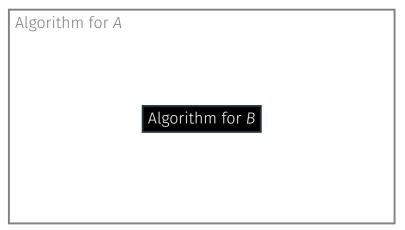
Reductions

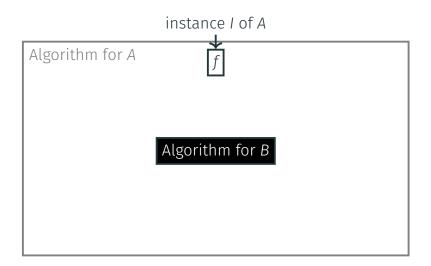
INFORMALLY

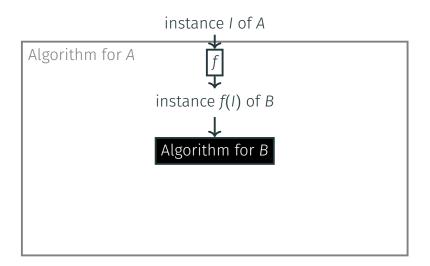
We say that a search problem A is reduced to a search problem B and write $A \rightarrow B$, if a polynomial time algorithm for B can be used (as a black box) to solve A in polynomial time.

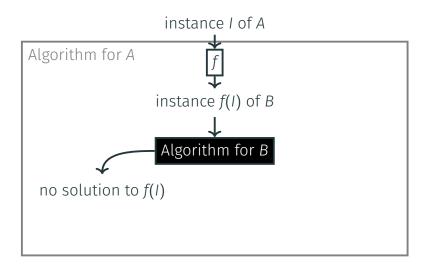
instance I of A

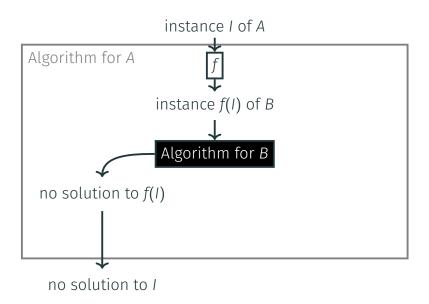
instance I of A

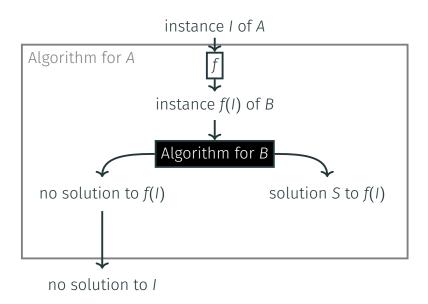


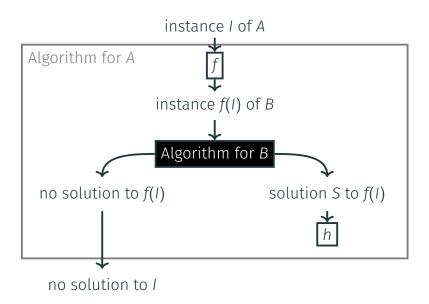


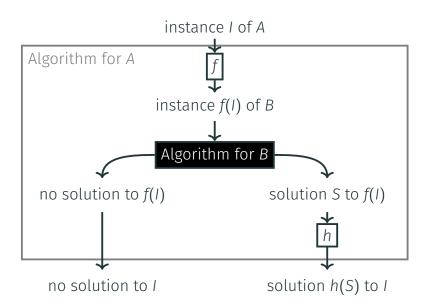










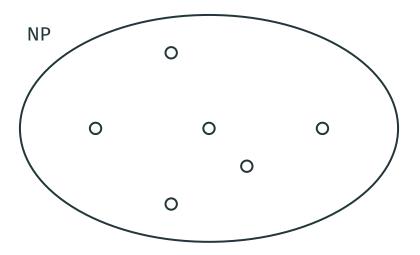


FORMALLY

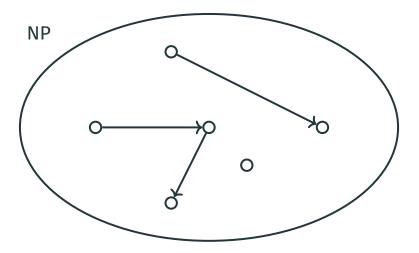
Definition

We say that a search problem A is reduced to a search problem B and write $A \rightarrow B$, if there exists a polynomial time algorithm f that converts any instance I of A into an instance f(I)of B, together with a polynomial time algorithm h that converts any solution S to f(I) back to a solution h(S) to A. If there is no solution to f(I), then there is no solution to I.

GRAPH OF SEARCH PROBLEMS



GRAPH OF SEARCH PROBLEMS



NP-COMPLETE PROBLEMS

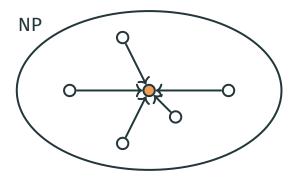
Definition

A search problem is called **NP-complete** if all other search problems reduce to it.

NP-COMPLETE PROBLEMS

Definition

A search problem is called **NP-complete** if all other search problems reduce to it.



Do they exist?

It's not at all immediate that **NP**-complete problems even exist. We'll see later that all hard problems that we've seen in the previous part are in fact **NP**-complete! Two ways of using $A \rightarrow B$:

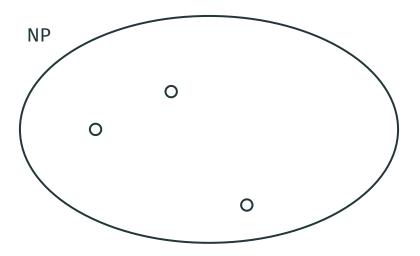
- if *B* is easy (can be solved in polynomial time), then so is *A*
- if A is hard (cannot be solved in polynomial time), then so is B

REDUCTIONS COMPOSE

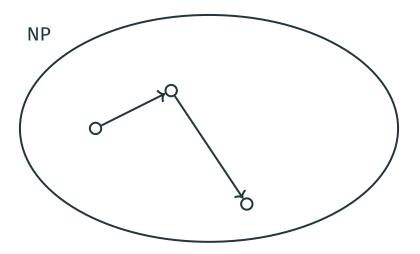
Lemma

If $A \to B$ and $B \to C$, then $A \to C$.

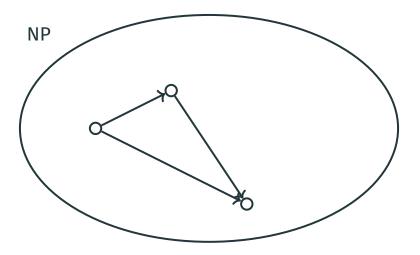
PICTORIALLY



PICTORIALLY

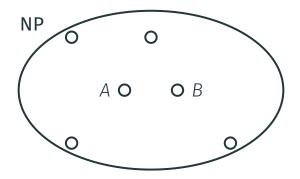


PICTORIALLY

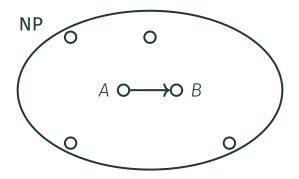


Corollary

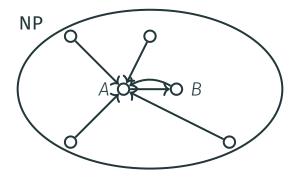
Corollary



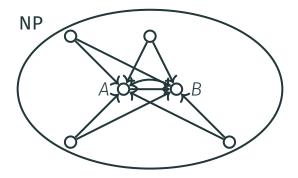
Corollary



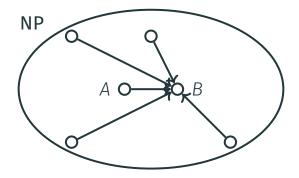
Corollary



Corollary



Corollary



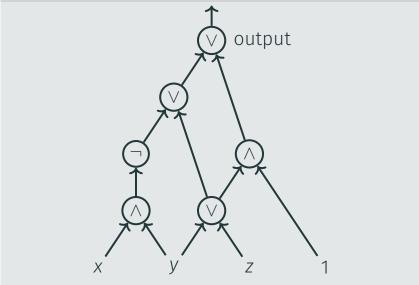
NP-Completeness of SAT

Show that every search problem reduces to SAT.

Show that every search problem reduces to SAT.

Instead, we show that any problem reduces to Circuit SAT problem, which, in turn, reduces to SAT.

Circuit



Definition

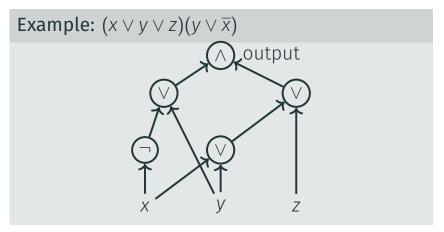
A circuit is a directed acyclic graph of in-degree at most 2. Nodes of in-degree 0 are called inputs and are marked by Boolean variables and constants. Nodes of in-degree 1 and 2 are called gates: gates of in-degree 1 are labeled with NOT, gates of in-degree 2 are labeled with AND or OR. One of the sinks is marked as output.

Circuit-SAT

Input: A circuit.

Output: An assignment of Boolean values to the input variables of the circuit that makes the output true.

SAT is a special case of Circuit-SAT as a SAT formula can be represented as a circuit:



$\mathsf{Circuit}\text{-}\mathsf{SAT}\to\mathsf{SAT}$

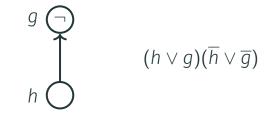
To reduce Circuit-SAT to SAT, we need to design a polynomial time algorithm that for a given circuit outputs a SAT formula which is satisfiable, if and only if the circuit is satisfiable

IDEA

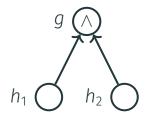
• Introduce a Boolean variable for each gate

• For each gate, write down a few clauses that describe the relationship between this gate and its direct predecessors

NOT GATES

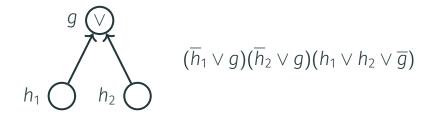


AND GATES



$(h_1 \vee \overline{g})(h_2 \vee \overline{g})(\overline{h}_1 \vee \overline{h}_2 \vee g)$

OR GATES



OUTPUT GATE

• The resulting SAT formula is consistent with the initial circuit: in any satisfying assignment of the formula, the value of g is equal to the value of the gate labeled with g in the circuit

- The resulting SAT formula is consistent with the initial circuit: in any satisfying assignment of the formula, the value of g is equal to the value of the gate labeled with g in the circuit
- Therefore, the SAT formula and the circuit are equisatisfiable

- The resulting SAT formula is consistent with the initial circuit: in any satisfying assignment of the formula, the value of g is equal to the value of the gate labeled with g in the circuit
- Therefore, the SAT formula and the circuit are equisatisfiable
- The reduction takes polynomial time

Reduce every search problem to Circuit-SAT.

Reduce every search problem to Circuit-SAT.

• Let A be a search problem

Reduce every search problem to Circuit-SAT.

- Let A be a search problem
- We know that there exists an algorithm C that takes an instance I of A and a candidate solution S and checks whether S is a solution for I in time polynomial in |I|

Reduce every search problem to Circuit-SAT.

- Let A be a search problem
- We know that there exists an algorithm C that takes an instance I of A and a candidate solution S and checks whether S is a solution for I in time polynomial in |I|
- \cdot In particular, |S| is polynomial in |I|

TURN AN ALGORITHM INTO A CIRCUIT

• Note that a computer is in fact a circuit implemented on a chip

TURN AN ALGORITHM INTO A CIRCUIT

- Note that a computer is in fact a circuit implemented on a chip
- Each step of the algorithm C(I, S) is performed by this computer's circuit

TURN AN ALGORITHM INTO A CIRCUIT

- Note that a computer is in fact a circuit implemented on a chip
- Each step of the algorithm C(I, S) is performed by this computer's circuit
- This gives a circuit of size polynomial in |*I*| that has input bits for *I* and *S* and outputs whether *S* is a solution for *I* (a separate circuit for each input length)

REDUCTION

To solve an instance *I* of the problem *A*:

- take a circuit corresponding to $\mathcal{C}(I,\cdot)$

REDUCTION

To solve an instance *I* of the problem *A*:

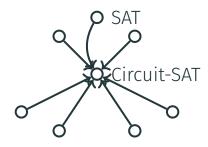
- take a circuit corresponding to $\mathcal{C}(I,\cdot)$
- the inputs to this circuit encode candidate solutions

REDUCTION

To solve an instance *I* of the problem *A*:

- take a circuit corresponding to $\mathcal{C}(I,\cdot)$
- the inputs to this circuit encode candidate solutions
- use a Circuit-SAT algorithm for this circuit to find a solution (if exists)

SUMMARY



SUMMARY

