Gems of TCS

RANDOMNESS

Sasha Golovnev
November 3, 2021

Deterministic Algorithms

Randomized Algorithms

Maximum Cut

- Undirected graph G, vertices V, edges E

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V, \bar{S} \subseteq V$

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V, \bar{S} \subseteq V$
- Cut $\delta(S)=\{(u, v) \in E: u \in S, v \in \bar{S}\}$

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V, \bar{S} \subseteq V$
- Cut $\delta(S)=\{(u, v) \in E: u \in S, v \in \bar{S}\}$
- Max-CUT: $\max _{s \subseteq v} \delta(S)$

Randomized Approximation

- Pick independent uniform subsets $S_{1}, \ldots, S_{k} \subseteq V$ for $k=100 \log n$

Randomized Approximation

- Pick independent uniform subsets $S_{1}, \ldots, S_{k} \subseteq V$ for $k=100 \log n$
- Output the subset with maximum cut $\delta\left(S_{i}\right)$

Randomized Approximation

- Pick independent uniform subsets $S_{1}, \ldots, S_{k} \subseteq V$ for $k=100 \log n$
- Output the subset with maximum cut $\delta\left(S_{i}\right)$
- Lecture 3: With probability $1-\frac{1}{10^{10 n}}$, we cut at least |E|/2.04 edges

BPP

Definition

P-problems that can be solved in polynomial time

BPP

Definition

P-problems that can be solved in polynomial time

Definition

NP-problems whose solution can be verified in polynomial time

BPP

Definition

P-problems that can be solved in polynomial time

Definition

NP-problems whose solution can be verified in polynomial time

Definition

BPP-problems that can be solved in polynomial time using randomness with probability $\geq 2 / 3$

Cloud Sync

- Synchronize local files to the cloud

Cloud Sync

- Synchronize local files to the cloud
- Has file been changed? File length: n bits

Randomized Algorithm

local file

1	0	0	1	1	0	1	1	0	0

1	0	0	1	1	1	1	1	0	0
cloud file									

Randomized Algorithm

local file

1	0	0	1	1	0	1	1	0	0
							$a \in\left\{0, \ldots, 2^{n}-1\right\}$		

1	0	0	1	1	1	1	1	0	0
cloud file									

Randomized Algorithm

local file

1	0	0	1	1	0	1	1	0	0
							$a \in\left\{0, \ldots, 2^{n}-1\right\}$		

$$
b \in\left\{0, \ldots, 2^{n}-1\right\}
$$

1	0	0	1	1	1	1	1	0	0

cloud file

Randomized Algorithm

local file

$$
b \in\left\{0, \ldots, 2^{n}-1\right\}
$$

1	0	0	1	1	1	1	1	0	0

cloud file

Randomized Algorithm

 local file| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a \in\left\{0, \ldots, 2^{n}-1\right\}$ | | | | | | | | | | |
| | | | \{0 | \ldots | n | | ran | | | ${ }^{2} \log$ |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | 0 |

Randomized Algorithm

 local file| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
a \in\left\{0, \ldots, 2^{n}-1\right\}
$$

EQ jiff
Pick random prime $p \in$ $\left\{2,3, \ldots, 100 n^{2} \log n\right\}$ $a=b \bmod p \downarrow$

$$
b \in\left\{0, \ldots, 2^{n}-1\right\}
$$

1	0	0	1	1	1	1	1	0	0

cloud file

ANALYSIS

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!
- Lecture 3: If $a \neq b$, then with probability $\approx 1-\frac{1}{100}$ we output NO!

RP

Definition

BPP-problems that can be solved in polynomial time using randomness with probability $\geq 2 / 3$

RP

Definition

BPP-problems that can be solved in polynomial time using randomness with probability $\geq 2 / 3$

Definition

RP—problems that can be solved in polynomial time using randomness s.t.

- If correct answer is 1 , then algorithm outputs 1 w. p. $\geq 2 / 3$;
- If correct answer is 0 , then algorithm outputs 0 always.

ERror Reduction for RP

ERROR REDUCTION FOR BPP

Chernoff Bound

Las Vegas Algorithms

$\mathrm{BPP} \subseteq \mathrm{P} /$ POLY

