Gems of TCS

Randomized Algorithms

Sasha Golovnev
September 1, 2021

Randomized Algorithms

- Randomized algorithm may be faster and simpler

Randomized Algorithms

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary

Randomized Algorithms

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary
- We'll use randomized algorithms in virtually all following topics

Randomized Algorithms

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary
- We'll use randomized algorithms in virtually all following topics
- Randomized algorithms make mistakes (with small probability)

Review of Probability Theory

- Sample Space Ω.

Review of Probability Theory

- Sample Space Ω.

$$
\Omega=\{1,2,3,4,5,6\} ;
$$

Review of Probability Theory

- Sample Space Ω.

$$
\Omega=\{1,2,3,4,5,6\} ; \Omega=\{H H, H T, T H, T T\}
$$

Review of Probability Theory

- Sample Space Ω.

$$
\Omega=\{1,2,3,4,5,6\} ; \Omega=\{H H, H T, T H, T T\}
$$

- Event $A \subseteq \Omega$.

Review of Probability Theory

- Sample Space Ω.

$$
\Omega=\{1,2,3,4,5,6\} ; \Omega=\{H H, H T, T H, T T\}
$$

- Event $A \subseteq \Omega . A=\{2,4,6\} ;$

Review of Probability Theory

- Sample Space Ω.

$$
\Omega=\{1,2,3,4,5,6\} ; \Omega=\{H H, H T, T H, T T\}
$$

- Event $A \subseteq \Omega . A=\{2,4,6\} ; A=\{T T, T H\}$

Review of Probability Theory

- Sample Space Ω.

$$
\Omega=\{1,2,3,4,5,6\} ; \Omega=\{H H, H T, T H, T T\}
$$

- Event $A \subseteq \Omega . A=\{2,4,6\} ; A=\{T T, T H\}$
- Probability measure: $\forall A, \operatorname{Pr}(A) \in[0,1]$

Review of Probability Theory

- Sample Space Ω.

$$
\Omega=\{1,2,3,4,5,6\} ; \Omega=\{H H, H T, T H, T T\}
$$

- Event $A \subseteq \Omega . A=\{2,4,6\} ; A=\{T T, T H\}$
- Probability measure: $\forall A, \operatorname{Pr}(A) \in[0,1]$
- $\operatorname{Pr}(\Omega)=1$

Review of Probability Theory

- Sample Space Ω.

$$
\Omega=\{1,2,3,4,5,6\} ; \Omega=\{H H, H T, T H, T T\}
$$

- Event $A \subseteq \Omega . A=\{2,4,6\} ; A=\{T T, T H\}$
- Probability measure: $\forall A, \operatorname{Pr}(A) \in[0,1]$
- $\operatorname{Pr}(\Omega)=1$
- A_{1}, A_{2}, \ldots are disjoint: $\operatorname{Pr}\left[\cup_{i} A_{i}\right]=\sum_{i} \operatorname{Pr}\left[A_{i}\right]$

Review of Probability Theory

- Sample Space Ω.

$$
\Omega=\{1,2,3,4,5,6\} ; \Omega=\{H H, H T, T H, T T\}
$$

- Event $A \subseteq \Omega . A=\{2,4,6\} ; A=\{T T, T H\}$
- Probability measure: $\forall A, \operatorname{Pr}(A) \in[0,1]$
- $\operatorname{Pr}(\Omega)=1$
- A_{1}, A_{2}, \ldots are disjoint: $\operatorname{Pr}\left[\cup_{i} A_{i}\right]=\sum_{i} \operatorname{Pr}\left[A_{i}\right]$
- $A_{1}=\{H H\}, A_{2}=\{H T\}$,
$\operatorname{Pr}\left[A_{1} \cup A_{2}\right]=\operatorname{Pr}\left[A_{1}\right]+\operatorname{Pr}\left[A_{2}\right]$

Independent Events

- A_{1} and A_{2} are independent iff $\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right]$

Independent Events

- A_{1} and A_{2} are independent iff $\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right]$
- $A_{1}=\{1$ st die is 6$\}, A_{2}=\{2$ nd die is 6$\}$

Independent Events

- A_{1} and A_{2} are independent iff $\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right]$
- $A_{1}=\{1$ st die is 6$\}, A_{2}=\{2$ nd die is 6$\}$
$\operatorname{Pr}\left[A_{1}\right]=1 / 6 ;$

Independent Events

- A_{1} and A_{2} are independent iff $\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right]$
- $A_{1}=\{1$ st die is 6$\}, A_{2}=\{2$ nd die is 6$\}$

$$
\operatorname{Pr}\left[A_{1}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{2}\right]=1 / 6 ;
$$

Independent Events

- A_{1} and A_{2} are independent iff $\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right]$
- $A_{1}=\{1$ st die is 6$\}, A_{2}=\{2$ nd die is 6$\}$

$$
\operatorname{Pr}\left[A_{1}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{2}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{1} \cap A_{2}\right]=1 / 36
$$

Independent Events

- A_{1} and A_{2} are independent iff

$$
\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right]
$$

- $A_{1}=\{1$ st die is 6$\}, A_{2}=\{2$ nd die is 6$\}$

$$
\operatorname{Pr}\left[A_{1}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{2}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{1} \cap A_{2}\right]=1 / 36
$$

- $A_{1}=\{1$ st die is 1$\}, A_{2}=\{$ sum of two dice is 2$\}$

Independent Events

- A_{1} and A_{2} are independent iff

$$
\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right]
$$

- $A_{1}=\{1$ st die is 6$\}, A_{2}=\{2$ nd die is 6$\}$

$$
\operatorname{Pr}\left[A_{1}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{2}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{1} \cap A_{2}\right]=1 / 36
$$

- $A_{1}=\{1$ st die is 1$\}, A_{2}=\{$ sum of two dice is 2$\}$

$$
\operatorname{Pr}\left[A_{1}\right]=1 / 6 ;
$$

Independent Events

- A_{1} and A_{2} are independent iff

$$
\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right]
$$

- $A_{1}=\{1$ st die is 6$\}, A_{2}=\{2$ nd die is 6$\}$

$$
\operatorname{Pr}\left[A_{1}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{2}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{1} \cap A_{2}\right]=1 / 36
$$

- $A_{1}=\{1$ st die is 1$\}, A_{2}=\{$ sum of two dice is 2$\}$

$$
\operatorname{Pr}\left[A_{1}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{2}\right]=1 / 36 ;
$$

Independent Events

- A_{1} and A_{2} are independent iff $\operatorname{Pr}\left[A_{1} \cap A_{2}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right]$
- $A_{1}=\{1$ st die is 6$\}, A_{2}=\{2$ nd die is 6$\}$

$$
\operatorname{Pr}\left[A_{1}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{2}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{1} \cap A_{2}\right]=1 / 36
$$

- $A_{1}=\{1$ st die is 1$\}, A_{2}=\{$ sum of two dice is 2$\}$

$$
\operatorname{Pr}\left[A_{1}\right]=1 / 6 ; \quad \operatorname{Pr}\left[A_{2}\right]=1 / 36 ; \quad \operatorname{Pr}\left[A_{1} \cap A_{2}\right]=1 / 36
$$

Random Variable

- Result of experiment is often not event but number

Random Variable

- Result of experiment is often not event but number
- Random variable X: $\Omega \rightarrow \mathbb{R}$

Random Variable

- Result of experiment is often not event but number
- Random variable X: $\Omega \rightarrow \mathbb{R}$
- Toss three coins, $X=$ number of heads

Random Variable

- Result of experiment is often not event but number
- Random variable X: $\Omega \rightarrow \mathbb{R}$
- Toss three coins, $X=$ number of heads
- Throw two dice:
$Y=$ sum of numbers, $Z=$ max of numbers

Random Variable

- Result of experiment is often not event but number
- Random variable X: $\Omega \rightarrow \mathbb{R}$
- Toss three coins, $X=$ number of heads
- Throw two dice:
$Y=$ sum of numbers, $Z=\max$ of numbers
- Expected value $\mathbb{E}[X]=\sum_{i} \operatorname{Pr}\left[x_{i}\right] \cdot x_{i}$

Random Variable

- Result of experiment is often not event but number
- Random variable X: $\Omega \rightarrow \mathbb{R}$
- Toss three coins, $X=$ number of heads
- Throw two dice:
$Y=$ sum of numbers, $Z=\max$ of numbers
- Expected value $\mathbb{E}[X]=\sum_{i} \operatorname{Pr}\left[x_{i}\right] \cdot x_{i}$
- Throw a die, $X=$ the number you're getting

$$
\mathbb{E}[X]=\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\ldots+\frac{1}{6} \cdot 6=3.5
$$

Cloud Sync

Cloud Sync

- Synchronize local files to the cloud

Cloud Sync

- Synchronize local files to the cloud
- Has file been changed? File length: n bits

Cloud Sync

- Synchronize local files to the cloud
- Has file been changed? File length: n bits
- Algorithm: send n bits

Cloud Sync

- Synchronize local files to the cloud
- Has file been changed? File length: n bits
- Algorithm: send n bits
- Can send $n-1$ bits?

Cloud Sync. Lower Bound

1	0	0	1	1	0	1	1	0	0

Cloud Sync. Lower Bound

Cloud Sync. Lower Bound

Cloud Sync. Lower Bound

No algorithm can solve the problem by sending $n-1$ bits

Cloud Sync. Lower Bound

1	0	0	1	1	0	1	1	0	0

No algorithm can solve the problem by sending $n-1$ bits

Randomized algorithm can solve the problem by sending $\approx \log n$ bits!

Randomized Algorithm

local file

1	0	0	1	1	0	1	1	0	0

1	0	0	1	1	1	1	1	0	0
cloud file									

Randomized Algorithm

local file

1	0	0	1	1	0	1	1	0	0
							$a \in\left\{0, \ldots, 2^{n}-1\right\}$		

1	0	0	1	1	1	1	1	0	0
cloud file									

Randomized Algorithm

local file

1	0	0	1	1	0	1	1	0	0
							$a \in\left\{0, \ldots, 2^{n}-1\right\}$		

$$
b \in\left\{0, \ldots, 2^{n}-1\right\}
$$

1	0	0	1	1	1	1	1	0	0

cloud file

Randomized Algorithm

local file

$$
b \in\left\{0, \ldots, 2^{n}-1\right\}
$$

1	0	0	1	1	1	1	1	0	0

cloud file

Randomized Algorithm

 local file| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a \in\left\{0, \ldots, 2^{n}-1\right\}$ | | | | | | | | | | |
| | | | \{0 | \downarrow | n- | | ra | $\begin{gathered} \text { don } \\ \epsilon \\ 10 \end{gathered}$ | | ${ }^{2} \log r$ |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | |

Randomized Algorithm

 local file| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
a \in\left\{0, \ldots, 2^{n}-1\right\}
$$

EQ jiff
Pick random prime $p \in$ $\left\{2,3, \ldots, 100 n^{2} \log n\right\}$ $a=b \bmod p \downarrow$

$$
b \in\left\{0, \ldots, 2^{n}-1\right\}
$$

1	0	0	1	1	1	1	1	0	0

cloud file

ANALYSIS

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!
- If $a \neq b$, how often do we output $E Q$?

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!
- If $a \neq b$, how often do we output $E Q$?
- $a-b=0 \bmod p$.

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!
- If $a \neq b$, how often do we output $E Q$?
- $a-b=0 \bmod p$.
$2^{n} \geq a-b$

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!
- If $a \neq b$, how often do we output $E Q$?
- $a-b=0 \bmod p$.
$2^{n} \geq a-b=p_{1} \cdot p_{2} \cdots p_{k}$

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!
- If $a \neq b$, how often do we output $E Q$?
- $a-b=0 \bmod p$.
$2^{n} \geq a-b=p_{1} \cdot p_{2} \cdots p_{k} \geq 2^{k}$

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!
- If $a \neq b$, how often do we output $E Q$?
- $a-b=0 \bmod p$.
$2^{n} \geq a-b=p_{1} \cdot p_{2} \cdots p_{k} \geq 2^{k}$
- Prime Number Theorem: there are $\approx N / \log N$ prime numbers in the interval $\{2,3, \ldots, N\}$

ANALYSIS

- If $a=b$, then for every $p, a=b \bmod p$. We always output EQ!
- If $a \neq b$, how often do we output $E Q$?
- $a-b=0 \bmod p$.
$2^{n} \geq a-b=p_{1} \cdot p_{2} \cdots p_{k} \geq 2^{k}$
- Prime Number Theorem: there are $\approx N / \log N$ prime numbers in the interval $\{2,3, \ldots, N\}$
- With probability $\approx 1-\frac{1}{100 n}$ the output is correct

Linearity of Expectation

$\mathbb{E}[X+Y]$?

Linearity of Expectation

$$
\begin{aligned}
& \mathbb{E}[X+Y] ? \\
& \quad \mathbb{E}[X+Y]=\sum_{i, j} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right] \cdot\left(x_{i}+y_{j}\right)
\end{aligned}
$$

LINEARITY OF EXPECTATION

$$
\begin{aligned}
& \mathbb{E}[X+Y] ? \\
& \begin{aligned}
\mathbb{E}[X+Y] & =\sum_{i, j} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right] \cdot\left(x_{i}+y_{j}\right) \\
& =\sum_{i} x_{i} \sum_{j} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right] \\
& +\sum_{j} y_{j} \sum_{i} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right]
\end{aligned}
\end{aligned}
$$

Linearity of Expectation

$$
\begin{aligned}
\mathbb{E}[X+Y] ? \\
\begin{aligned}
\mathbb{E}[X+Y] & =\sum_{i, j} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right] \cdot\left(x_{i}+y_{j}\right) \\
& =\sum_{i} x_{i} \sum_{j} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right] \\
& +\sum_{j} y_{j} \sum_{i} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right] \\
& =\sum_{i} x_{i} \operatorname{Pr}\left[X=x_{i}\right]+\sum_{j} y_{j} \operatorname{Pr}\left[Y=y_{j}\right]
\end{aligned}
\end{aligned}
$$

Linearity of Expectation

$$
\begin{aligned}
& \mathbb{E}[X+Y] ? \\
& \mathbb{E}[X+Y]=\sum_{i, j} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right] \cdot\left(x_{i}+y_{j}\right) \\
&=\sum_{i} x_{i} \sum_{j} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right] \\
&+\sum_{j} y_{j} \sum_{i} \operatorname{Pr}\left[X=x_{i} \cap Y=y_{j}\right] \\
&=\sum_{i} x_{i} \operatorname{Pr}\left[X=x_{i}\right]+\sum_{j} y_{j} \operatorname{Pr}\left[Y=y_{j}\right] \\
&=\mathbb{E}[X]+\mathbb{E}[Y]
\end{aligned}
$$

LINEARITY OF EXPECTATION

- One die: $\mathbb{E}[X]=3.5$

LINEARITY OF EXPECTATION

- One die: $\mathbb{E}[X]=3.5$
- Five dice? $\mathbb{E}\left[X_{1}+X_{2}+X_{3}+X_{4}+X_{5}\right]$?

LINEARITY OF EXPECTATION

- One die: $\mathbb{E}[X]=3.5$
- Five dice? $\mathbb{E}\left[X_{1}+X_{2}+X_{3}+X_{4}+X_{5}\right]$?
- By linearity of expectation:

$$
\begin{aligned}
& \mathbb{E}\left[X_{1}+X_{2}+X_{3}+X_{4}+X_{5}\right] \\
= & \mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{3}\right]+\mathbb{E}\left[X_{4}\right]+\mathbb{E}\left[X_{5}\right] \\
= & 5 \cdot 3.5=17.5
\end{aligned}
$$

BREAK

- Alice and Bob have (unusual) dice
- Numbers on Alice's die are 2, 2, 2, 2, 3, 3
- Numbers on Bob's die are 1, 1, 1, 1, 6, 6
- Alice and Bob throw their dice; the one with the larger number on the die wins
-Whose die has larger expected number?
-Who wins with higher probability?

Maximum Cut (Max-CUT)

Maximum Cut

- Undirected graph G, vertices V, edges E

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V, \bar{S} \subseteq V$

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V, \bar{S} \subseteq V$
- Cut $\delta(S)=\{(u, v) \in E: u \in S, v \in \bar{S}\}$

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V, \bar{S} \subseteq V$
- Cut $\delta(S)=\{(u, v) \in E: u \in S, v \in \bar{S}\}$
- Max-CUT: $\max _{S \subseteq V} \delta(S)$

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V, \bar{S} \subseteq V$
- Cut $\delta(S)=\{(u, v) \in E: u \in S, v \in \bar{S}\}$
- Max-CUT: $\max _{S \subseteq V} \delta(S)$
- NP-hard to solve

Maximum Cut

- Undirected graph G, vertices V, edges E
- Bipartition of V that maximizes the number of edges crossing the partition
- Bipartition: $S \subseteq V, \bar{S} \subseteq V$
- Cut $\delta(S)=\{(u, v) \in E: u \in S, v \in \bar{S}\}$
- Max-CUT: $\max _{S \subseteq v} \delta(S)$
- NP-hard to solve exactly

Randomized Approximation

- Output a random subset $S \subseteq V$

Randomized Approximation

- Output a random subset $S \subseteq V$
- In other words, add each vertex v in S independently with probability $1 / 2$

Randomized Approximation

- Output a random subset $S \subseteq V$
- In other words, add each vertex vin S independently with probability $1 / 2$
- Each edge (u, v) is cut with probability $1 / 2$

ANALYSIS

- $X_{u, v}=1$ if (u, v) is cut, $X_{u, v}=0$ otherwise

ANALYSIS

- $X_{u, v}=1$ if (u, v) is cut, $X_{u, v}=0$ otherwise
- $X_{u, v}=1$ with probability $1 / 2$

ANALYSIS

- $X_{u, v}=1$ if (u, v) is cut, $X_{u, v}=0$ otherwise
- $X_{u, v}=1$ with probability $1 / 2$
- $\mathbb{E}\left[X_{u, v}\right]=1 / 2$

ANALYSIS

- $X_{u, v}=1$ if (u, v) is cut, $X_{u, v}=0$ otherwise
- $X_{u, v}=1$ with probability $1 / 2$
- $\mathbb{E}\left[X_{u, v}\right]=1 / 2$
- Number of cut edges

$$
\sum_{(u, v) \in E} X_{u, v}
$$

ANALYSIS

- $X_{u, v}=1$ if (u, v) is cut, $X_{u, v}=0$ otherwise
- $X_{u, v}=1$ with probability $1 / 2$
- $\mathbb{E}\left[X_{u, v}\right]=1 / 2$
- Number of cut edges

$$
\sum_{(u, v) \in E} X_{u, v}
$$

- Expected number of cut edges

$$
\mathbb{E}\left[\sum_{(u, v) \in E} X_{u, v}\right]=\sum_{(u, v) \in E} \mathbb{E}\left[X_{u, v}\right]=|E| / 2
$$

2-APPROXIMATION

- Max-CUT: OPT $\leq|E|$

2-APPROXIMATION

- Max-CUT: OPT $\leq|E|$
- Our algorithm: $\mathbb{E}[\delta(S)] \geq|E| / 2$

2-APPROXIMATION

- Max-CUT: OPT $\leq|E|$
- Our algorithm: $\mathbb{E}[\delta(S)] \geq|E| / 2$
- $\mathbb{E}[\delta(S)] \geq$ OPT $/ 2$

2-APPROXIMATION

- Max-CUT: OPT $\leq|E|$
- Our algorithm: $\mathbb{E}[\delta(S)] \geq|E| / 2$
- $\mathbb{E}[\delta(S)] \geq$ OPT /2
- Can we have algorithm that always outputs $\delta(S) \geq$ OPT $/ 2$?

MARKOV'S INEQUALITY

Theorem

If X is non-negative random variable*, then

$$
\forall a, \quad \operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}
$$

MARKOV'S INEQUALITY

Theorem

If X is non-negative random variable*, then

$$
\forall a, \quad \operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}
$$

Examples:

$$
\operatorname{Pr}[X \geq 2 \mathbb{E}[X]] \leq \frac{1}{2}
$$

MARKOV'S INEQUALITY

Theorem

If X is non-negative random variable*, then

$$
\forall a, \quad \operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}
$$

Examples:

$$
\begin{aligned}
& \operatorname{Pr}[X \geq 2 \mathbb{E}[X]] \leq \frac{1}{2} . \\
& \operatorname{Pr}[X \geq 5 \mathbb{E}[X]] \leq \frac{1}{5} .
\end{aligned}
$$

Lottery Budget

Problem

A lottery ticket costs 10 dollars. A 40\% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1\%

Lottery Budget

Problem

A lottery ticket costs 10 dollars. A 40\% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1\%

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01

Lottery Budget

Problem

A lottery ticket costs 10 dollars. A 40\% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1\%

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n

Lottery Budget

Problem

A lottery ticket costs 10 dollars. A 40\% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1\%

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n
- Then the budget of the lottery is $10 n$ dollars

Lottery Budget

Problem

A lottery ticket costs 10 dollars. A 40\% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1\%

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n
- Then the budget of the lottery is 10 n dollars
- $10 n \times 0.4=4 n$ dollars are spent on the prizes

Lottery Budget

Problem

A lottery ticket costs 10 dollars. A 40\% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1\%

- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n
- Then the budget of the lottery is 10 n dollars
- $10 n \times 0.4=4 n$ dollars are spent on the prizes
- By our assumption at least $\frac{n}{100}$ tickets win at least 500 dollars

Lottery Budget

Problem

A lottery ticket costs 10 dollars. A 40\% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1\%

- In total these tickets win $\frac{n}{100} \times 500=5 n$ dollars

Lottery Budget

Problem

A lottery ticket costs 10 dollars. A 40\% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1\%

- In total these tickets win $\frac{n}{100} \times 500=5 n$ dollars
- This exceeds the total prize budget of $4 n$!

Lottery Budget

Problem

A lottery ticket costs 10 dollars. A 40\% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1\%

- In total these tickets win $\frac{n}{100} \times 500=5 n$ dollars
- This exceeds the total prize budget of $4 n$!
- Contradiction!

Geometric Proof

$\mathbb{E}[X] \geq a \times \operatorname{Pr}[X \geq a]$

Geometric Proof

$\mathbb{E}[X] \geq a \times \operatorname{Pr}[X \geq a]$
Suppose X takes values $a_{1}, a_{2}, a_{3}, a_{4}$ with probabilities
$p_{1}, p_{2}, p_{3}, p_{4}$

Geometric Proof

$\mathbb{E}[X] \geq a \times \operatorname{Pr}[X \geq a]$
Suppose X takes values $a_{1}, a_{2}, a_{3}, a_{4}$ with probabilities $p_{1}, p_{2}, p_{3}, p_{4}$

Geometric Proof

$\mathbb{E}[X] \geq a \times \operatorname{Pr}[X \geq a]$
Suppose X takes values $a_{1}, a_{2}, a_{3}, a_{4}$ with probabilities $p_{1}, p_{2}, p_{3}, p_{4}$

Geometric Proof

$\mathbb{E}[X] \geq a \times \operatorname{Pr}[X \geq a]$
Suppose X takes values $a_{1}, a_{2}, a_{3}, a_{4}$ with probabilities $p_{1}, p_{2}, p_{3}, p_{4}$

Geometric Proof

$\mathbb{E}[X] \geq a \times \operatorname{Pr}[X \geq a]$
Suppose X takes values $a_{1}, a_{2}, a_{3}, a_{4}$ with probabilities $p_{1}, p_{2}, p_{3}, p_{4}$

Geometric Proof

$\mathbb{E}[X] \geq a \times \operatorname{Pr}[X \geq a]$
Suppose X takes values $a_{1}, a_{2}, a_{3}, a_{4}$ with probabilities
$p_{1}, p_{2}, p_{3}, p_{4}$

$\mathbb{E}[X]$ is the area of the gray region

Geometric Proof

$\mathbb{E}[X] \geq a \times \operatorname{Pr}[X \geq a]$
Suppose X takes values $a_{1}, a_{2}, a_{3}, a_{4}$ with probabilities
$p_{1}, p_{2}, p_{3}, p_{4}$

$\mathbb{E}[X]$ is the area of the gray region
$a \times \operatorname{Pr}[X \geq a]$ is the area of the red region

Geometric Proof

$\mathbb{E}[X] \geq a \times \operatorname{Pr}[X \geq a]$
Suppose X takes values $a_{1}, a_{2}, a_{3}, a_{4}$ with probabilities
$p_{1}, p_{2}, p_{3}, p_{4}$

$\mathbb{E}[X]$ is the area of
the gray region
$a \times \operatorname{Pr}[X \geq a]$ is the
area of the red
region

The gray region is larger: the inequality follows

Approximation Guarantee

- $\mathbb{E}[\#$ cut edges $]=|E| / 2 \Longrightarrow$ $\mathbb{E}[\#$ uncut edges $]=|E| / 2$

Approximation Guarantee

- $\mathbb{E}[\#$ cut edges $]=|E| / 2 \Longrightarrow$ $\mathbb{E}[\#$ uncut edges $]=|E| / 2$
- $\operatorname{Pr}\left[\#\right.$ uncut edges $\left.\geq \frac{|E|}{2}(1+\varepsilon)\right] \leq \frac{1}{1+\varepsilon}$

Approximation Guarantee

- $\mathbb{E}[\#$ cut edges $]=|E| / 2 \Longrightarrow$ $\mathbb{E}[\#$ uncut edges $]=|E| / 2$
- $\operatorname{Pr}\left[\#\right.$ uncut edges $\left.\geq \frac{|E|}{2}(1+\varepsilon)\right] \leq \frac{1}{1+\varepsilon}$
- $\operatorname{Pr}\left[\#\right.$ cut edges $\left.\leq \frac{| |}{2}(1-\varepsilon)\right] \leq \frac{1}{1+\varepsilon} \leq 1-\varepsilon / 2$

Approximation Guarantee

- $\mathbb{E}[\#$ cut edges] $=|E| / 2 \Longrightarrow$ $\mathbb{E}[\#$ uncut edges $]=|E| / 2$
- $\operatorname{Pr}\left[\#\right.$ uncut edges $\left.\geq \frac{|E|}{2}(1+\varepsilon)\right] \leq \frac{1}{1+\varepsilon}$
- $\operatorname{Pr}\left[\#\right.$ cut edges $\left.\leq \frac{|E|}{2}(1-\varepsilon)\right] \leq \frac{1}{1+\varepsilon} \leq 1-\varepsilon / 2$
- With probability at least $\varepsilon / 2$, we have $\frac{2}{1-\varepsilon}$-approximation

Approximation Guarantee

- $\mathbb{E}[\#$ cut edges $]=|E| / 2$ $\mathbb{E}[\#$ uncut edges $]=|E| / 2$
- $\operatorname{Pr}\left[\#\right.$ uncut edges $\left.\geq \frac{|E|}{2}(1+\varepsilon)\right] \leq \frac{1}{1+\varepsilon}$
- $\operatorname{Pr}\left[\#\right.$ cut edges $\left.\leq \frac{|E|}{2}(1-\varepsilon)\right] \leq \frac{1}{1+\varepsilon} \leq 1-\varepsilon / 2$
- With probability at least $\varepsilon / 2$, we have $\frac{2}{1-\varepsilon}$-approximation
- Ex. $\varepsilon=1 / 100$: with probability at least $1 / 200$, we have 2.03-approximation

Probability Amplification

- Pick independent uniform subsets $S_{1}, \ldots, S_{k} \subseteq V$

Probability Amplification

- Pick independent uniform subsets $S_{1}, \ldots, S_{k} \subseteq V$
- Output the subset with maximum cut $\delta\left(S_{i}\right)$

Probability Amplification

- Pick independent uniform subsets $S_{1}, \ldots, S_{k} \subseteq V$
- Output the subset with maximum cut $\delta\left(S_{i}\right)$
- $\operatorname{Pr}\left[\max \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]$

Probability Amplification

- Pick independent uniform subsets

$$
S_{1}, \ldots, S_{k} \subseteq V
$$

- Output the subset with maximum cut $\delta\left(S_{i}\right)$
- $\operatorname{Pr}\left[\max \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]=\operatorname{Pr}\left[\operatorname{all} \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]$

Probability Amplification

- Pick independent uniform subsets

$$
S_{1}, \ldots, S_{k} \subseteq V
$$

- Output the subset with maximum cut $\delta\left(S_{i}\right)$
- $\operatorname{Pr}\left[\max \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]=\operatorname{Pr}\left[\operatorname{all} \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]$

$$
\leq(1-\varepsilon / 2)^{k}
$$

Probability Amplification

- Pick independent uniform subsets

$$
S_{1}, \ldots, S_{k} \subseteq V
$$

- Output the subset with maximum cut $\delta\left(S_{i}\right)$
- $\operatorname{Pr}\left[\max \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]=\operatorname{Pr}\left[\operatorname{all} \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]$

$$
\leq(1-\varepsilon / 2)^{k} \leq e^{-\varepsilon k / 2}
$$

Probability Amplification

- Pick independent uniform subsets

$$
S_{1}, \ldots, S_{k} \subseteq V
$$

- Output the subset with maximum cut $\delta\left(S_{i}\right)$
- $\operatorname{Pr}\left[\max \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]=\operatorname{Pr}\left[\operatorname{all} \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]$ $\leq(1-\varepsilon / 2)^{k} \leq e^{-\varepsilon k / 2} \leq \frac{1}{10^{10} n}$ for $k=\frac{2 \ln n+50}{\varepsilon}$

ProbABILITY AMPLIFICATION

- Pick independent uniform subsets

$$
S_{1}, \ldots, S_{k} \subseteq V
$$

- Output the subset with maximum cut $\delta\left(S_{i}\right)$
- $\operatorname{Pr}\left[\max \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]=\operatorname{Pr}\left[\operatorname{all} \delta\left(S_{i}\right) \leq \frac{|E|}{2}(1-\varepsilon)\right]$

$$
\leq(1-\varepsilon / 2)^{k} \leq e^{-\varepsilon k / 2} \leq \frac{1}{10^{10} n} \text { for } k=\frac{2 \ln n+50}{\varepsilon}
$$

- We have $\frac{2}{1-\varepsilon}$-approximation with probability $1-\frac{1}{10^{10} n}$

SUMMARY

- Randomized algorithm may be faster and simpler

SUMMARY

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary

SUMMARY

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary
- We can go from expectation to probability via Markov's inequality

SUMMARY

- Randomized algorithm may be faster and simpler
- For some tasks randomness is necessary
- We can go from expectation to probability via Markov's inequality
- We can amplify probability of success by independent repetitions

