
GEMS OF TCS
DATA STRUCTURES

Sasha Golovnev
September 8, 2021



DATA STRUCTURES

Stack, Queue, List, Heap

Search Trees

Hash Tables



COPING WITH HARD PROBLEMS

• Some problems are too hard to solve exactly

• Approximation

• Randomness

• Today: Preprocessing



COPING WITH HARD PROBLEMS

• Some problems are too hard to solve exactly

• Approximation

• Randomness

• Today: Preprocessing



COPING WITH HARD PROBLEMS

• Some problems are too hard to solve exactly

• Approximation

• Randomness

• Today: Preprocessing



COPING WITH HARD PROBLEMS

• Some problems are too hard to solve exactly

• Approximation

• Randomness

• Today: Preprocessing



EXAMPLES

• Graph Distances: Preprocess a road network in
order to efficiently compute distance queries
between cities
(Google Maps)

• Clustering: Preprocess a set of movies in order
to efficiently find closest movie to a query
movie
(Netflix recommendations)



EXAMPLES

• Graph Distances: Preprocess a road network in
order to efficiently compute distance queries
between cities
(Google Maps)

• Clustering: Preprocess a set of movies in order
to efficiently find closest movie to a query
movie
(Netflix recommendations)



DATA STRUCTURES

Preprocessing



DATA STRUCTURES

Preprocessing

Queries



DATA STRUCTURES

Preprocessing

Queries

New York — Washington



DATA STRUCTURES

Preprocessing

Queries

New York — Washington



DATA STRUCTURES

Preprocessing

Queries

New York — Washington Washington — Boston



Stealing Passwords



PASSWORD HASHING

login/pwd

login/pwd



PASSWORD HASHING

login/pwd

login/pwd

haveibeenpwned.com:
Your account has
been compromised



PASSWORD HASHING

login/pwd

login/hash(pwd)



PASSWORD HASHING

login/pwd

login/hash(pwd)

hash(qwerty)=1xe4ht
hash(111111)=nh83l0



PASSWORD HASHING
haveibeenpwned.com:
Your account has
been compromised

login/pwd

login/hash(pwd)

hash(qwerty)=1xe4ht
hash(111111)=nh83l0



HASHING

• (Cryptographic) hash function maps strings to
strings such that it’s hard to invert

• Ideally, to find a password that leads to a fixed
hash value, one needs to brute force all
possible passwords

• Hash functions are publicly known (SHA-3)

• For now, consider hash functions
f : {1, . . . ,N} → {1, . . . ,N} that are bijections



HASHING

• (Cryptographic) hash function maps strings to
strings such that it’s hard to invert

• Ideally, to find a password that leads to a fixed
hash value, one needs to brute force all
possible passwords

• Hash functions are publicly known (SHA-3)

• For now, consider hash functions
f : {1, . . . ,N} → {1, . . . ,N} that are bijections



HASHING

• (Cryptographic) hash function maps strings to
strings such that it’s hard to invert

• Ideally, to find a password that leads to a fixed
hash value, one needs to brute force all
possible passwords

• Hash functions are publicly known (SHA-3)

• For now, consider hash functions
f : {1, . . . ,N} → {1, . . . ,N} that are bijections



HASHING

• (Cryptographic) hash function maps strings to
strings such that it’s hard to invert

• Ideally, to find a password that leads to a fixed
hash value, one needs to brute force all
possible passwords

• Hash functions are publicly known (SHA-3)

• For now, consider hash functions
f : {1, . . . ,N} → {1, . . . ,N} that are bijections



INVERTING A BIJECTION

• Let f : {1, . . . ,N} → {1, . . . ,N} be a bijection

• Invert it in time T =
√
N and space S =

√
N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• In- and out-degrees
of all vertices are 1

• Thus, this graph is a
union of cycles



INVERTING A BIJECTION

• Let f : {1, . . . ,N} → {1, . . . ,N} be a bijection

• Invert it in time T =
√
N and space S =

√
N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• In- and out-degrees
of all vertices are 1

• Thus, this graph is a
union of cycles



INVERTING A BIJECTION

• Let f : {1, . . . ,N} → {1, . . . ,N} be a bijection

• Invert it in time T =
√
N and space S =

√
N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• In- and out-degrees
of all vertices are 1

• Thus, this graph is a
union of cycles



INVERTING A BIJECTION

• Let f : {1, . . . ,N} → {1, . . . ,N} be a bijection

• Invert it in time T =
√
N and space S =

√
N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• In- and out-degrees
of all vertices are 1

• Thus, this graph is a
union of cycles



INVERTING A BIJECTION

• Let f : {1, . . . ,N} → {1, . . . ,N} be a bijection

• Invert it in time T =
√
N and space S =

√
N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• In- and out-degrees
of all vertices are 1

• Thus, this graph is a
union of cycles



INVERTING A BIJECTION



INVERTING A BIJECTION

x



INVERTING A BIJECTION

x
√
N



INVERTING A BIJECTION

x
x

√
N



INVERTING A BIJECTION

x
x

√
N

√
N

√
N

√
N

√
N x

x
x



INVERTING A BIJECTION

x
x

√
N

√
N

√
N

√
N

√
N x

x
x

Store x land-
marks,



INVERTING A BIJECTION

x
x

√
N

√
N

√
N

√
N

√
N x

x
x

Store x land-
marks,
and links to
previous land-
marks



INVERTING A BIJECTION

x
x

√
N

√
N

√
N

√
N

√
N x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N

time T ≈
√
N:



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N

time T ≈
√
N:

Invert y = f(x)



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N

time T ≈
√
N:

Invert y = f(x)

y = f(x)



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N

time T ≈
√
N:

Invert y = f(x)

y = f(x)
x



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N

time T ≈
√
N:

Invert y = f(x)

y = f(x)
x



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N

time T ≈
√
N:

Invert y = f(x)

y = f(x)
x

f(y)



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N

time T ≈
√
N:

Invert y = f(x)

y = f(x)
x

f(y)



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N

time T ≈
√
N:

Invert y = f(x)

y = f(x)
x

f(y)



INVERTING A BIJECTION

x
x

x

x
x

Store x land-
marks,
and links to
previous land-
marks
space S ≈

√
N

time T ≈
√
N:

Invert y = f(x)

y = f(x)
x

f(y)



DATA STRUCTURE

• Let ST = N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• Partition the graph into cycles

• Ignore cycles of length ≤ T

• In all other cycles store every Tth vertex as
a landmark

• Space: S, query time: T



DATA STRUCTURE

• Let ST = N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• Partition the graph into cycles

• Ignore cycles of length ≤ T

• In all other cycles store every Tth vertex as
a landmark

• Space: S, query time: T



DATA STRUCTURE

• Let ST = N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• Partition the graph into cycles

• Ignore cycles of length ≤ T

• In all other cycles store every Tth vertex as
a landmark

• Space: S, query time: T



DATA STRUCTURE

• Let ST = N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• Partition the graph into cycles

• Ignore cycles of length ≤ T

• In all other cycles store every Tth vertex as
a landmark

• Space: S, query time: T



DATA STRUCTURE

• Let ST = N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• Partition the graph into cycles

• Ignore cycles of length ≤ T

• In all other cycles store every Tth vertex as
a landmark

• Space: S, query time: T



DATA STRUCTURE

• Let ST = N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• Partition the graph into cycles

• Ignore cycles of length ≤ T

• In all other cycles store every Tth vertex as
a landmark

• Space: S, query time: T



Prohibited Passwords



PROHIBITED PASSWORDS

• Check if entered password is in the list of m
prohibited passwords

• We can store m strings, check in ∼ logm time

• Bloom filters: store ∼ m bits, check in O(1)
time

• We’ll be wrong with small probability



PROHIBITED PASSWORDS

• Check if entered password is in the list of m
prohibited passwords

• We can store m strings, check in ∼ logm time

• Bloom filters: store ∼ m bits, check in O(1)
time

• We’ll be wrong with small probability



PROHIBITED PASSWORDS

• Check if entered password is in the list of m
prohibited passwords

• We can store m strings, check in ∼ logm time

• Bloom filters: store ∼ m bits, check in O(1)
time

• We’ll be wrong with small probability



PROHIBITED PASSWORDS

• Check if entered password is in the list of m
prohibited passwords

• We can store m strings, check in ∼ logm time

• Bloom filters: store ∼ m bits, check in O(1)
time

• We’ll be wrong with small probability



DATA STRUCTURE

• We want a data structure that supports two
functions

• Insert(x)
• Lookup(x)

• Hashtables: less efficient but don’t make
mistakes

• Bloom fitler will use array of n bits
A[0], . . . ,A[n− 1], initialized with zeros

• We’ll use k = O(1) hash functions



DATA STRUCTURE

• We want a data structure that supports two
functions
• Insert(x)

• Lookup(x)
• Hashtables: less efficient but don’t make
mistakes

• Bloom fitler will use array of n bits
A[0], . . . ,A[n− 1], initialized with zeros

• We’ll use k = O(1) hash functions



DATA STRUCTURE

• We want a data structure that supports two
functions
• Insert(x)
• Lookup(x)

• Hashtables: less efficient but don’t make
mistakes

• Bloom fitler will use array of n bits
A[0], . . . ,A[n− 1], initialized with zeros

• We’ll use k = O(1) hash functions



DATA STRUCTURE

• We want a data structure that supports two
functions
• Insert(x)
• Lookup(x)

• Hashtables: less efficient but don’t make
mistakes

• Bloom fitler will use array of n bits
A[0], . . . ,A[n− 1], initialized with zeros

• We’ll use k = O(1) hash functions



DATA STRUCTURE

• We want a data structure that supports two
functions
• Insert(x)
• Lookup(x)

• Hashtables: less efficient but don’t make
mistakes

• Bloom fitler will use array of n bits
A[0], . . . ,A[n− 1], initialized with zeros

• We’ll use k = O(1) hash functions



DATA STRUCTURE

• We want a data structure that supports two
functions
• Insert(x)
• Lookup(x)

• Hashtables: less efficient but don’t make
mistakes

• Bloom fitler will use array of n bits
A[0], . . . ,A[n− 1], initialized with zeros

• We’ll use k = O(1) hash functions



HASH FUNCTIONS

• We have k hash functions f1, . . . , fk from strings
to {0, . . . ,n− 1}

• Assume that functions are independent and
uniform random



HASH FUNCTIONS

• We have k hash functions f1, . . . , fk from strings
to {0, . . . ,n− 1}

• Assume that functions are independent and
uniform random



BLOOM FITLER

• Insert(x):
• for i = 1, . . . , k,

• A[fi(x)]← 1

• Lookup(x):
• return 1 iff for every i = 1, . . . , k,
A[fi(x)] = 1



BLOOM FITLER

• Insert(x):
• for i = 1, . . . , k,

• A[fi(x)]← 1
• Lookup(x):

• return 1 iff for every i = 1, . . . , k,
A[fi(x)] = 1



ANALYSIS


