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DATA STRUCTURES

Stack, Queue, List, Heap

Search Trees

Hash Tables
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• Some problems are too hard to solve exactly

• Approximation

• Randomness

• Today: Preprocessing
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HASHING

• (Cryptographic) hash function maps strings to
strings such that it’s hard to invert

• Ideally, to find a password that leads to a fixed
hash value, one needs to brute force all
possible passwords

• Hash functions are publicly known (SHA-3)

• For now, consider hash functions
f : {1, . . . ,N} → {1, . . . ,N} that are bijections
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• Let f : {1, . . . ,N} → {1, . . . ,N} be a bijection

• Invert it in time T =
√
N and space S =

√
N

• Let’s define a directed graph on N vertices with
edges x→ f(x)

• In- and out-degrees
of all vertices are 1

• Thus, this graph is a
union of cycles
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