Gems of TCS

Exponential-time Algorithms

Sasha Golovnev
September 15, 2021

EXACT Algorithms

- We need to solve problem exactly

Exact Algorithms

- We need to solve problem exactly
- Problem takes exponential time solve exactly

EXACt Algorithms

- We need to solve problem exactly
- Problem takes exponential time solve exactly
- Intelligent exhaustive search: finding optimal solution without going through all candidate solutions

Running Time

running time:
 n
 n^{2}
 n
 less than 109: $\begin{array}{lllll}10^{9} & 10^{4.5} & 10^{3} & 12\end{array}$

Running Time

running time:
 n
 n^{3}
 $n!$
 less than $10^{9}: \quad 10^{9} \quad 10^{4.5} \quad 10^{3} \quad 12$

running time: $n!4^{n} \quad 2^{n} 1.308^{n}$
less than 109: $12 \begin{array}{llll}12 & 29 & 77\end{array}$

Traveling Salesman Problem (TSP)

Traveling Salesman Problem

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

Traveling Salesman Problem

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 9

ALGORITHMS

- Classical optimization problem with countless number of real life applications (see Lecture 1)

ALGORITHMS

- Classical optimization problem with countless number of real life applications (see Lecture 1)
- No polynomial time algorithms known

ALGORITHMS

- Classical optimization problem with countless number of real life applications (see Lecture 1)
- No polynomial time algorithms known
- We'll see exact exponential-time algorithms

Brute Force Solution

A naive algorithm just checks all possible $\sim n$! cycles.

Brute Force Solution

A naive algorithm just checks all possible $\sim n$! cycles.

We'll see

- Use dynamic programming to solve TSP in $O\left(n^{2} \cdot 2^{n}\right)$

Brute Force Solution

A naive algorithm just checks all possible $\sim n$! cycles.

We'll see

- Use dynamic programming to solve TSP in $O\left(n^{2} \cdot 2^{n}\right)$
- The running time is exponential, but is much better than n !

DYNAMIC PROGRAMMING

- Dynamic programming is one of the most powerful algorithmic techniques

DYnAmic Programming

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems

DYnamic Programming

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems
- Solve subproblems one by one. Store solutions to subproblems in a table to avoid recomputing the same thing again

Subproblems

- For a subset of vertices $S \subseteq\{1, \ldots, n\}$ containing the vertex 1 and a vertex $i \in S$, let $C(S, i)$ be the length of the shortest path that starts at 1, ends at i and visits all vertices from S exactly once

Subproblems

- For a subset of vertices $S \subseteq\{1, \ldots, n\}$ containing the vertex 1 and a vertex $i \in S$, let $C(S, i)$ be the length of the shortest path that starts at 1, ends at i and visits all vertices from S exactly once
- $C(\{1\}, 1)=0$ and $C(S, 1)=+\infty$ when $|S|>1$

Recurrence Relation

- Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S

Recurrence Relation

- Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
- The subpath from 1 to j is the shortest one visiting all vertices from $S-\{i\}$ exactly once

Recurrence Relation

- Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
- The subpath from 1 to j is the shortest one visiting all vertices from $S-\{i\}$ exactly once
- Hence
$C(S, i)=\min _{j}\left\{C(S-\{i\}, j)+d_{j i}\right\}$, where the minimum is over all $j \in S$ such that $j \neq i$

Order of Subproblems

- Need to process all subsets $S \subseteq\{1, \ldots, n\}$ in an order that guarantees that when computing the value of $C(S, i)$, the values of $C(S-\{i\}, j)$ have already been computed

Order of Subproblems

- Need to process all subsets $S \subseteq\{1, \ldots, n\}$ in an order that guarantees that when computing the value of $C(S, i)$, the values of $C(S-\{i\}, j)$ have already been computed
- For example, we can process subsets in order of increasing size

ALGORITHM

$$
\begin{aligned}
& C(*, *) \leftarrow+\infty \\
& C(\{1\}, 1) \leftarrow 0
\end{aligned}
$$

ALGORITHM

$C(*, *) \leftarrow+\infty$
$C(\{1\}, 1) \leftarrow 0$
for s from 2 to n :
for all $1 \in S \subseteq\{1, \ldots, n\}$ of size s :

ALGORITHM

$C(*, *) \leftarrow+\infty$
$C(\{1\}, 1) \leftarrow 0$
for s from 2 to n :
for all $1 \in S \subseteq\{1, \ldots, n\}$ of size s :
for all $i \in S, i \neq 1$:

$$
\text { for all } j \in S, j \neq i
$$

$$
C(S, i) \leftarrow \min \left\{C(S, i), C(S-\{i\}, j)+d_{j i}\right\}
$$

AlGORITHM

$C(*, *) \leftarrow+\infty$
$C(\{1\}, 1) \leftarrow 0$
for s from 2 to n :
for all $1 \in S \subseteq\{1, \ldots, n\}$ of size s :
for all $i \in S, i \neq 1$:
for all $j \in S, j \neq i$

$$
C(S, i) \leftarrow \min \left\{C(S, i), C(S-\{i\}, j)+d_{j i}\right\}
$$

return $\min _{i}\left\{C(\{1, \ldots, n\}, i)+d_{i, 1}\right\}$

Satisfiability Problem (SAT)

SAT

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)
$$

SAT

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)
$$

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)$

k-SAT

$$
\begin{aligned}
\phi\left(x_{1}, \ldots, x_{n}\right)= & \left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \\
\ldots & \wedge \\
& \left(x_{2} \vee \neg x_{3} \vee \ldots \vee x_{8}\right)
\end{aligned}
$$

k-SAT

$$
\begin{aligned}
\phi\left(x_{1}, \ldots, x_{n}\right)= & \left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \\
\ldots & \wedge \\
& \left(x_{2} \vee \neg x_{3} \vee \ldots \vee x_{8}\right)
\end{aligned}
$$

ϕ is satisfiable if

$$
\exists x \in\{0,1\}^{n}: \phi(x)=1 .
$$

Otherwise, ϕ is unsatisfiable

k-SAT

$$
\begin{aligned}
\phi\left(x_{1}, \ldots, x_{n}\right)= & \left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \\
\ldots & \wedge \\
& \left(x_{2} \vee \neg x_{3} \vee \ldots \vee x_{8}\right)
\end{aligned}
$$

ϕ is satisfiable if

$$
\exists x \in\{0,1\}^{n}: \phi(x)=1 .
$$

Otherwise, ϕ is unsatisfiable
n Boolean vars, m clauses

k-SAT

$$
\begin{aligned}
\phi\left(x_{1}, \ldots, x_{n}\right)= & \left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \\
\ldots & \wedge \\
& \left(x_{2} \vee \neg x_{3} \vee \ldots \vee x_{8}\right)
\end{aligned}
$$

ϕ is satisfiable if

$$
\exists x \in\{0,1\}^{n}: \phi(x)=1 .
$$

Otherwise, ϕ is unsatisfiable
n Boolean vars, m clauses
k-SAT is SAT where clause length $\leq k$

k-SAT. EXAMPLES

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$

k-SAT. EXAMPLES

$$
\begin{gathered}
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \\
\left(x_{1}\right) \wedge\left(\neg x_{2}\right) \wedge\left(x_{3}\right) \wedge\left(\neg x_{1}\right)
\end{gathered}
$$

Complexity of SAT

$$
\begin{aligned}
& \text { 2-SAT } \\
& \text { 1-SAT }
\end{aligned}
$$

Complexity of SAT

$$
\begin{gathered}
\text { SAT } \\
\text { R-SAT } \\
\vdots \\
3-S A T \\
\text { 2-SAT } \\
\text { 1-SAT }
\end{gathered}
$$

But how hard is SAT?

SAT IN 2^{n}

- $O^{*}(\cdot)$ suppresses polynomial factors in the input length:

$$
2^{n} n^{10} m^{2}=0^{*}\left(2^{n}\right)
$$

SAT IN 2^{n}

- $0^{*}(\cdot)$ suppresses polynomial factors in the input length:

$$
2^{n} n^{10} m^{2}=O^{*}\left(2^{n}\right)
$$

- SAT can be solved in time $O^{*}\left(2^{n}\right)$

SAT IN 2^{n}

- $O^{*}(\cdot)$ suppresses polynomial factors in the input length:

$$
2^{n} n^{10} m^{2}=O^{*}\left(2^{n}\right)
$$

- SAT can be solved in time $O^{*}\left(2^{n}\right)$
- We don't know how to solve SAT exponentially faster: in time $0^{*}\left(1.999^{n}\right)$

3-SAT

- $\left(x_{1} \vee x_{2} \vee x_{9}\right) \wedge \ldots \wedge\left(x_{2} \vee \neg x_{3} \vee x_{8}\right)$

3-SAT

- $\left(x_{1} \vee x_{2} \vee x_{9}\right) \wedge \ldots \wedge\left(x_{2} \vee \neg x_{3} \vee x_{8}\right)$

3-SAT

- $\left(x_{1} \vee x_{2} \vee x_{9}\right) \wedge \ldots \wedge\left(x_{2} \vee \neg x_{3} \vee x_{8}\right)$
- Consider three sub-problems:
- $x_{1}=1$
- $x_{1}=0, x_{2}=1$
- $x_{1}=0, x_{2}=0, x_{9}=1$

3-SAT

- $\left(x_{1} \vee x_{2} \vee x_{9}\right) \wedge \ldots \wedge\left(x_{2} \vee \neg x_{3} \vee x_{8}\right)$
- Consider three sub-problems:

$$
\begin{aligned}
& \cdot x_{1}=1 \\
& \cdot x_{1}=0, x_{2}=1 \\
& \cdot x_{1}=0, x_{2}=0, x_{9}=1
\end{aligned}
$$

- The original formula is SAT iff at least one of these formulas is SAT

3-SAT. Analysis

- $T(n) \leq T(n-1)+T(n-2)+T(n-3)$

3-SAT. ANALYSIS

- $T(n) \leq T(n-1)+T(n-2)+T(n-3)$
- $T(n) \leq 1.85^{n}$:

3-SAT. Analysis

- $T(n) \leq T(n-1)+T(n-2)+T(n-3)$
- $T(n) \leq 1.85^{n}$:

$$
\begin{aligned}
T(n) & \leq T(n-1)+T(n-2)+T(n-3) \\
& \leq 1.85^{n-1}+1.85^{n-2}+1.85^{n-3} \\
& =1.85^{n}\left(\frac{1}{1.85}+\frac{1}{1.85^{2}}+\frac{1}{1.85^{3}}\right) \\
& <1.85^{n}(0.991) \\
& <1.85^{n}
\end{aligned}
$$

3-SAT. Analysis

- $T(n) \leq T(n-1)+T(n-2)+T(n-3)$
- $T(n) \leq 1.85^{n}$:

$$
\begin{aligned}
T(n) & \leq T(n-1)+T(n-2)+T(n-3) \\
& \leq 1.85^{n-1}+1.85^{n-2}+1.85^{n-3} \\
& =1.85^{n}\left(\frac{1}{1.85}+\frac{1}{1.85^{2}}+\frac{1}{1.85^{3}}\right) \\
& <1.85^{n}(0.991) \\
& <1.85^{n}
\end{aligned}
$$

- There are even faster algorithms: 1.308^{n} [HKZZ19]

How hard can SAT be?

Algorithmic Complexity of SAT

Algorithmic Complexity of SAT

$$
\begin{aligned}
& \text { 3-SAT } \\
& \text { 2-SAT O(m) } \\
& \text { 1-SAT O(m) }
\end{aligned}
$$

Algorithmic Complexity of SAT

$$
\begin{aligned}
& \text { k-SAT } \\
& \vdots \\
& \text { 3-SAT } \\
& \text { 2-SAT O(m) } \\
& \text { 1-SAT } O(\mathrm{~m})
\end{aligned}
$$

Algorithmic Complexity of SAT

$$
\begin{aligned}
& \text { SAT } \\
& k \text {-SAT } \\
& \vdots \\
& \text { 3-SAT } \\
& \text { 2-SAT O(m) } \\
& \text { 1-SAT } O(\mathrm{~m})
\end{aligned}
$$

