Gems of TCS

GRaph Coloring Algorithms

Sasha Golovnev
September 22, 2021

Previously...

- Exact Algorithms
- Randomized Algorithms
- Approximate Algorithms

Previousty...

- Exact Algorithms
- Randomized Algorithms
- Approximate Algorithms
- Today: More examples

Map Coloring

South America

The Land of Oz

SwIss Cantons

Four Color Theorem

Theorem [Appel, Haken, 1976]
Every map can be colored with 4 colors.

Four Color Theorem

Theorem [Appel, Haken, 1976]
Every map can be colored with 4 colors.

- Proved using a computer.

Four Color Theorem

Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

- Proved using a computer.
- Computer checked almost 2000 graphs.

Four Color Theorem

Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

- Proved using a computer.
- Computer checked almost 2000 graphs.
- Robertson, Sanders, Seymour, and Thomas gave a much simpler proof in 1997 (still using a computer search).

Four Color Theorem

Theorem [Appel, Haken, 1976]

Every map can be colored with 4 colors.

- Proved using a computer.
- Computer checked almost 2000 graphs.
- Robertson, Sanders, Seymour, and Thomas gave a much simpler proof in 1997 (still using a computer search).

Theorem [Weak Version]

Every map can be colored with 6 colors.

Six Color Theorem

Theorem [Weak Version]

Every map can be colored with 6 colors.

- Induction on the number of countries n.

Six Color Theorem

Theorem [Weak Version]

Every map can be colored with 6 colors.

- Induction on the number of countries n.
- Base case. $n \leq 6$: can color with 6 colors.

Six Color Theorem

Theorem [Weak Version]

Every map can be colored with 6 colors.

- Induction on the number of countries n.
- Base case. $n \leq 6$: can color with 6 colors.
- Induction assumption. All maps with k countries can be colored with 6 colors.

Six Color Theorem

Theorem [Weak Version]

Every map can be colored with 6 colors.

- Induction on the number of countries n.
- Base case. $n \leq 6$: can color with 6 colors.
- Induction assumption. All maps with k countries can be colored with 6 colors.
- Induction step. We'll show that any map with $k+1$ countries can be colored with 6 colors.

Six Color Theorem. Proof

Lemma

Every map contains a country v with at most 5 neighbors.

Six Color Theorem. Proof

Lemma

Every map contains a country v with at most 5 neighbors.

Six Color Theorem. Proof

Lemma

Every map contains a country v with at most 5 neighbors.

Six Color Theorem. Proof

Lemma

Every map contains a country v with at most 5 neighbors.

Graph Coloring

Graph Coloring

- A graph coloring is a coloring of the graph vertices s.t. no pair of adjacent vertices share the same color.

Graph Coloring

- A graph coloring is a coloring of the graph vertices s.t. no pair of adjacent vertices share the same color.
- The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed to color the graph.

Chromatic Number

Chromatic Number

Chromatic Number

Chromatic Number

Chromatic Number

Chromatic number is 3

Complete Graphs

The chromatic number of K_{n} is n.

Path Graphs

For $n>1$, the chromatic number of P_{n} is 2 .

Cycle Graphs

For even n, the chromatic number of C_{n} is 2 .

Cycle Graphs

For odd $n>2$, the chromatic number of C_{n} is 3 .

Bipartite Graphs

The chromatic number of a bipartite graph (with at least 1 edge) is 2 .

Applications

EXAM SCHEDULE

- Each student takes an exam in each of her courses
- All students in one course take the exam together
- One student cannot take two exams per day
- What is the minimum number of days needed for the exams?

EXAM SCHEDULE

- Each student takes an exam in each of her courses
- All students in one course take the exam together
- One student cannot take two exams per day
- What is the minimum number of days needed for the exams?

EXAM SCHEDULE

- Each student takes an exam in each of her courses
- All students in one course take the exam together
- One student cannot take two exams per day
- What is the minimum number of days needed for the exams?

EXAM SCHEDULE

- Each student takes an exam in each of her courses
- All students in one course take the exam together
- One student cannot take two exams per day
- What is the minimum number of days needed for the exams?

BANDWIDTH ALLOCATION

Different stations are allowed to use the same frequency if they are far apart. What is an optimal assignment of frequencies to stations?

BANDWIDTH ALLOCATION

Different stations are allowed to use the same frequency if they are far apart. What is an optimal assignment of frequencies to stations?

BANDWIDTH ALLOCATION

Different stations are allowed to use the same frequency if they are far apart. What is an optimal assignment of frequencies to stations?

Other Applications

- Scheduling Problems
- Register Allocation
- Sudoku puzzles
- Taxis scheduling

Exact Algorithm for Coloring

Dynamic Programming

- Given graph G on n vertices, find $\chi(G)$-minimum number of colors in a valid coloring of G

Dynamic Programming

- Given graph G on n vertices, find $\chi(G)$-minimum number of colors in a valid coloring of G
- Dynamic programming is one of the most powerful algorithmic techniques

DYnAmic Programming

- Given graph G on n vertices, find $\chi(G)$-minimum number of colors in a valid coloring of G
- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems

Subproblems

- For a subset of vertices $S \subseteq\{1, \ldots, n\}$ compute $\chi(S)$-the minimum number of colors needed to color vertices S

SUbPRoblems

Subproblems

- For a subset of vertices $S \subseteq\{1, \ldots, n\}$ compute $\chi(S)$-the minimum number of colors needed to color vertices S
- Consider S. For any subset $U \subseteq S$, if there are no edges between vertices from U, we can color them all in one color, and use $\chi(S \backslash U)$ to color the rest

Subproblems

- For a subset of vertices $S \subseteq\{1, \ldots, n\}$ compute $\chi(S)$-the minimum number of colors needed to color vertices S
- Consider S. For any subset $U \subseteq S$, if there are no edges between vertices from U, we can color them all in one color, and use $\chi(S \backslash U)$ to color the rest

$$
\chi(S)=\min _{U \text { without edges }} 1+\chi(S \backslash U)
$$

Order of Subproblems

- Need to process all subsets $S \subseteq\{1, \ldots, n\}$ in order that guarantees that when computing the value of $\chi(S)$, the values of $\chi(S \backslash U)$ have already been computed

Order of Subproblems

- Need to process all subsets $S \subseteq\{1, \ldots, n\}$ in order that guarantees that when computing the value of $\chi(S)$, the values of $\chi(S \backslash U)$ have already been computed
- For example, we can process subsets in order of increasing size

ALGORITHM

$$
\chi(\emptyset)=0
$$

ALGORITHM

$\chi(\emptyset)=0$
for sfrom 1 to n :
for all $S \subseteq\{1, \ldots, n\}$ of size s :

AlGORITHM

$\chi(\emptyset)=0$
for s from 1 to n :
for all $S \subseteq\{1, \ldots, n\}$ of size s :
for all $U \subseteq S, U$ without edges
$\chi(S) \leftarrow \min \{\chi(S), \chi(S \backslash U)+1\}$

ALGORITHM

$\chi(\emptyset)=0$
for s from 1 to n :
for all $S \subseteq\{1, \ldots, n\}$ of size s :
for all $U \subseteq S, U$ without edges
$\chi(S) \leftarrow \min \{\chi(S), \chi(S \backslash U)+1\}$
return $\chi(\{1, \ldots, n\})$

Running Time

$\chi(\emptyset)=0$
FOR S FROM 1 TO n :
FOR ALL $S \subseteq\{1, \ldots, n\}$ OF SIZE $S:$
FOR ALL $U \subseteq S, U$ without edges

$$
\chi(S) \leftarrow \min \{\chi(S), \chi(S \backslash U)+1\}
$$

RETURN $\chi(\{1, \ldots, n\})$

Randomized Algorithm for 3-Coloring

Randomized Algorithm

- Given a 3-colorable graph, find a 3-coloring

Randomized Algorithm

- Given a 3-colorable graph, find a 3-coloring
- This problem is NP-hard, we'll give an exponential-time algorithm

Randomized Algorithm

- Forbid one random color at each vertex

Randomized Algorithm

Randomized Algorithm

- Forbid one random color at each vertex
- Solve 2-SAT in polynomial time

Randomized Algorithm

- Forbid one random color at each vertex
- Solve 2-SAT in polynomial time
- Repeat the algorithm $(3 / 2)^{n}$ times

Approximate Algorithm for 3-Coloring

Approximate Coloring

- Given a 3-colorable graph, finding a 3-coloring is NP-hard

Approximate Coloring

- Given a 3-colorable graph, finding a 3-coloring is NP-hard
- Given a 3-colorable graph, finding an n-coloring is trivial

Approximate Coloring

- Given a 3-colorable graph, finding a 3-coloring is NP-hard
- Given a 3-colorable graph, finding an n-coloring is trivial
- We'll see how to find an $O(\sqrt{n})$-coloring in polynomial time

Graphs of Bounded Degree

Greedy Coloring

A graph G where each vertex has degree $\leq \Delta$ can be colored with $\Delta+1$ colors.

Graphs of Bounded Degree

Greedy Coloring

A graph G where each vertex has degree $\leq \Delta$ can be colored with $\Delta+1$ colors.

Graphs of Bounded Degree

Greedy Coloring

A graph G where each vertex has degree $\leq \Delta$ can be colored with $\Delta+1$ colors.

Approximate Algorithm

While there is vertex $v \in G$ of degree $\geq \sqrt{n}$:

Approximate Algorithm

While there is vertex $v \in G$ of degree $\geq \sqrt{n}$:

Approximate Algorithm

While there is vertex $v \in G$ of degree $\geq \sqrt{n}$:

Approximate Algorithm

While there is vertex $v \in G$ of degree $\geq \sqrt{n}$: Color the neighbors of v in 2 new colors, remove them from the graph

Approximate Algorithm

While there is vertex $v \in G$ of degree $\geq \sqrt{n}$: Color the neighbors of v in 2 new colors, remove them from the graph
All remaining vertices have degree $<\sqrt{n}$. Color the rest of the graph using \sqrt{n} new colors

ANALYSIS

