Gems of TCS

Heuristic Algorithms

Sasha Golovnev
Semptermber 27, 2021

Heuristic Algorithms

- When exact algorithms are too slow, and approximate algorithm are not accurate enough

Heuristic Algorithms

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms

Heuristic Algorithms

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient

Heuristic Algorithms

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient
- Some heuristic algorithms are fast but not guaranteed to find optimal solutions

Heuristic Algorithms

- When exact algorithms are too slow, and approximate algorithm are not accurate enough
- We can use heuristic algorithms
- Heuristic algorithms use practical methods that are not guaranteed/proved to be optimal or efficient
- Some heuristic algorithms are fast but not guaranteed to find optimal solutions
- Some heuristic algorithms find optimal solutions but not guaranteed to be fast

Traveling Salesman

Traveling Salesman Problem

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

Traveling Salesman Problem

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 9

Nearest Neighbors

- Going to the nearest unvisited node at every iteration?

Nearest Neighbors

- Going to the nearest unvisited node at every iteration?
- Efficient, works reasonably well in practice

Nearest Neighbors

- Going to the nearest unvisited node at every iteration?
- Efficient, works reasonably well in practice
- May produce a cycle that is much worse than an optimal one

Nearest Neighbors: Bad Case

- How to fool the nearest neighbors heuristic?

Nearest Neighbors: Bad Case

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2

Nearest Neighbors: Bad Case

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

Nearest Neighbors: Bad Case

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:
-

Nearest Neighbors: Bad Case

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

Nearest Neighbors: Bad Case

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

-

Nearest Neighbors: Bad Case

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

Nearest Neighbors: Bad Case

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

Suboptimal Solution for Euclidean TSP

Suboptimal Solution for Euclidean TSP

OPT ≈ 26.42

Suboptimal Solution for Euclidean TSP

OPT ≈ 26.42

Suboptimal Solution for Euclidean TSP

OPT ≈ 26.42

Suboptimal Solution for Euclidean TSP

OPT ≈ 26.42

Suboptimal Solution for Euclidean TSP

OPT ≈ 26.42

Suboptimal Solution for Euclidean TSP

$\mathrm{OPT} \approx 26.42$
$\mathrm{NN} \approx 28.33$

Suboptimal Solution for Euclidean TSP

$$
\begin{aligned}
& \mathrm{OPT} \approx 26.42 \\
& \mathrm{NN} \approx 28.33
\end{aligned}
$$

For Euclidean instances, the resulting cycle is $O(\log n)$-approximate

Local Search

- $s \leftarrow$ some initial solution

Local Search

- $s \leftarrow$ some initial solution
- while it is possible to change 2 edges in s to get a better cycle s':

Local Search

- $s \leftarrow$ some initial solution
- while it is possible to change 2 edges in s to get a better cycle s':
- $s \leftarrow s^{\prime}$

Local Search

- $s \leftarrow$ some initial solution
- while it is possible to change 2 edges in s to get a better cycle s^{\prime} :
- $S \leftarrow S^{\prime}$
- return s

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

Changing two edges in a suboptimal solution:

EXAMPLE

A suboptimal solution that cannot be improved by changing two edges:

EXAMPLE

A suboptimal solution that cannot be improved by changing two edges:

Need to allow changing three edges to improve this solution

Local Search

Local Search with parameter d:

- $s \leftarrow$ some initial solution
- while it is possible to change d edges in s to get a better cycle s^{\prime} :
- $S \leftarrow S^{\prime}$
- return s

Properties

- Computes a local optimum instead of a global optimum

PROPERTIES

- Computes a local optimum instead of a global optimum
- The larger d, the better the resulting solution and the higher is the running time

Performance

- Trade-off between quality and running time of a single iteration

Performance

- Trade-off between quality and running time of a single iteration
- Still, the number of iterations may be exponential and the quality of the found cycle may be poor

Performance

- Trade-off between quality and running time of a single iteration
- Still, the number of iterations may be exponential and the quality of the found cycle may be poor
- But works well in practice

Satisfiability

SAT

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)
$$

SAT

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)
$$

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)$

BACKTRACKING

- Construct a solution piece by piece

BACKTRACKING

- Construct a solution piece by piece
- Backtrack if the current partial solution cannot be extended to a valid solution

EXAMPLE

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)\left(\neg x_{1}\right)\left(x_{1} \vee x_{2} \vee \neg x_{3}\right)\left(x_{1} \vee \neg x_{2}\right)\left(x_{2} \vee \neg x_{4}\right)
$$

EXAMPLE

Backtracking Algorithm

- SolveSAT(F):
- if F has no clauses:
return "sat"
- if F contains an empty clause: return "unsat"

Backtracking Algorithm

- SolveSAT(F):
- if F has no clauses:
return "sat"
- if F contains an empty clause:
return "unsat"
- $x \leftarrow$ unassigned variable of F

Backtracking Algorithm

- SolveSAT(F):
- if F has no clauses:
return "sat"
- if F contains an empty clause:
return "unsat"
- $x \leftarrow$ unassigned variable of F
- if SolveSAT $(F[x \leftarrow 0])=$ "sat": return "sat"

Backtracking Algorithm

- SolveSAT(F):
- if F has no clauses:
return "sat"
- if F contains an empty clause:
return "unsat"
- $x \leftarrow$ unassigned variable of F
- if SolveSAT $(F[x \leftarrow 0])=$ "sat": return "sat"
- if SolveSAT $(F[x \leftarrow 1])=$ "sat": return "sat"

Backtracking Algorithm

- SolveSAT(F):
- if F has no clauses:
return "sat"
- if F contains an empty clause:
return "unsat"
- $x \leftarrow$ unassigned variable of F
- if SolveSAT $(F[x \leftarrow 0])=$ "sat": return "sat"
- if SolveSAT $(F[x \leftarrow 1])=$ "sat": return "sat"
- return "unsat"

BACKTRACKING

- Thus, instead of considering all 2^{n} branches of the recursion tree, we track carefully each branch

BACKTRACKING

- Thus, instead of considering all 2^{n} branches of the recursion tree, we track carefully each branch
- When we realize that a branch is dead (cannot be extended to a solution), we immediately cut it

SAT Solvers

- Backtracking is used in many state-of-the-art SAT-solvers

SAT Solvers

- Backtracking is used in many state-of-the-art SAT-solvers
- SAT-solvers use tricky heuristics to choose a variable to branch on, simplify a formula before branching, and use efficient data structures

SAT Solvers

- Backtracking is used in many state-of-the-art SAT-solvers
- SAT-solvers use tricky heuristics to choose a variable to branch on, simplify a formula before branching, and use efficient data structures
- Another commonly used technique is local search

Applications

The Art of Computer Programming

THE ART OF
COMPUTER PROGRAMMING
VOLUME 4 PRE-FASCICLE 6A

A DRAFT OF
SECTION 7.2.2.2: SATISFIABILITY

The Art of Computer Programming

Wow! - Section 7.2.2.2 has turned out to be the longest section, by far, in The Art of Computer Programming. The SAT problem is evidently a "killer app," because it is key to the solution of so many problems. Consequently I can only hope that my lengthy treatment does not also kill off my faithful readers!

SAT HANdBOOK

Conference, Competition, Journal

- Annual SAT Conference (since 1996): http://satisfiability.org

Conference, Competition, Journal

- Annual SAT Conference (since 1996): http://satisfiability.org
- Annual SAT Solving competitions (since 2002): http://www.satcompetition.org/

Conference, Competition, Journal

- Annual SAT Conference (since 1996): http://satisfiability.org
- Annual SAT Solving competitions (since 2002): http://www.satcompetition.org/
- Journal on Satisfiability, Boolean Modeling and Computation: http://jsatjournal.org/

Math Proofs

nature International weekly journal of science
Home \mid News \& Comment \mid Research \mid Careers \& Jobs \mid Current Issue \mid Archive \mid Audio \& Video \mid For

NATURE | NEWS
< 昆
Two-hundred-terabyte maths proof is largest ever A computer cracks the Boolean Pythagorean triples problem - but is it really maths?

Evelyn Lamb
26 May 2016
(PDF \quad Rights \& Permissions

Math Proofs

Computer Search Settles 90-Year-Old Math Problem

By translating Keller's conjecture into a computerfriendly search for a type of graph, researchers have
finally resolved a problem about covering spaces with tiles.

SAT Solvers

from pycosat import solve
clauses $=[[-1,-2,-3],[1,-2],[2,-3],[3$,
-1], [1, 2, 3]]
print(solve(clauses))
print(solve(clauses[1:]))

SAT Solvers

from pycosat import solve
clauses $=[[-1,-2,-3],[1,-2],[2,-3],[3$,
-1], [1, 2, 3]]
print(solve(clauses))
print(solve(clauses[1:]))
UNSAT
$[1,2,3]$

N Queens

Is it possible to place n queens on an $n \times n$ board such that no two of them attack each other?

EXAMPLES

EXAMPLES

Encoding As SAT

- $n^{2} 0 / 1$-variables: for $0 \leq i, j<n, x_{i j}=1$ iff queen is placed into cell (i, j)

Encoding As SAT

- $n^{2} 0 / 1$-variables: for $0 \leq i, j<n, x_{i j}=1$ iff queen is placed into cell (i, j)
- For $0 \leq i<n$, ith row contains ≥ 1 queen:

$$
\left(x_{i 0}=1 \text { or } x_{i 2}=1 \text { or } \ldots \text { or } x_{i(n-1)}=1\right) .
$$

Encoding as SAT

- $n^{2} 0 / 1$-variables: for $0 \leq i, j<n, x_{i j}=1$ iff queen is placed into cell (i, j)
- For $0 \leq i<n$, ith row contains ≥ 1 queen:

$$
\left(x_{i 0}=1 \text { or } x_{i 2}=1 \text { or } \ldots \text { or } x_{i(n-1)}=1\right) .
$$

- For $0 \leq i<n$, ith row contains ≤ 1 queen:

$$
\forall 0 \leq j_{1} \neq j_{2}<n:\left(x_{i_{1}}=0 \text { or } x_{i j_{2}}=0\right) .
$$

Encoding as SAT

- $n^{2} 0 / 1$-variables: for $0 \leq i, j<n, x_{i j}=1$ iff queen is placed into cell (i, j)
- For $0 \leq i<n$, ith row contains ≥ 1 queen:

$$
\left(x_{i 0}=1 \text { or } x_{i 2}=1 \text { or } \ldots \text { or } x_{i(n-1)}=1\right) .
$$

- For $0 \leq i<n$, ith row contains ≤ 1 queen:

$$
\forall 0 \leq j_{1} \neq j_{2}<n: \quad\left(x_{i_{1}}=0 \text { or } x_{i j_{2}}=0\right) .
$$

- For $0 \leq j<n$, j th column contains ≤ 1 queen:

$$
\forall 0 \leq i_{1} \neq i_{2}<n: \quad\left(x_{i, j}=0 \text { or } x_{i, j}=0\right) .
$$

Encoding As SAT

- $n^{2} 0 / 1$-variables: for $0 \leq i, j<n, x_{i j}=1$ iff queen is placed into cell (i, j)
- For $0 \leq i<n$, ith row contains ≥ 1 queen:

$$
\left(x_{i 0}=1 \text { or } x_{i 2}=1 \text { or } \ldots \text { or } x_{i(n-1)}=1\right) .
$$

- For $0 \leq i<n$, ith row contains ≤ 1 queen:

$$
\forall 0 \leq j_{1} \neq j_{2}<n:\left(x_{i_{1}}=0 \text { or } x_{i j_{2}}=0\right) .
$$

- For $0 \leq j<n$, j th column contains ≤ 1 queen:

$$
\forall 0 \leq i_{1} \neq i_{2}<n: \quad\left(x_{i, j}=0 \text { or } x_{i, j}=0\right) .
$$

- For each pair $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)$ on diagonal:

$$
\left(x_{i, j_{1}}=0 \text { or } x_{i j_{2}}=0\right) .
$$

IMPLEMENTATION

```
from itertools import combinations, product
from pycosat import solve
n=10
clauses = []
# converts a pair of integers into a unique integer
def varnum(i, j):
    assert i in range(n) and j in range(n)
    return i * n + j + 1
# each row contains at least one queen
for i in range(n):
    clauses.append([varnum(i, j) for j in range(n)])
# each row contains at most one queen
for i in range(n):
    for j1, j2 in combinations(range(n), 2):
        clauses.append([-varnum(i, j1), -varnum(i, j2)])
# each column contains at most one queen
for j in range(n):
    for i1, i2 in combinations(range(n), 2):
        clauses.append([-varnum(i1, j), -varnum(i2, j)])
# no two queens stay on the same diagonal
for i1, j1, i2, j2 in product(range(n), repeat=4):
    if i1 == i2:
        continue
    if abs(i1 - i2) == abs(j1 - j2):
        clauses.append([-varnum(i1, j1),
                            -varnum(i2, j2)])
assignment = solve(clauses)
for i, j in product(range(n), repeat=2):
    if assignment[varnum(i, j) - 1] > 0:
        print(j, end=' ')
```

