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Abstract

Minimum Circuit Size Problem (MCSP) asks to decide if a given truth table of an n-variate
boolean function has circuit complexity less than a given parameter s. We prove that MCSP is
hard for constant-depth circuits with mod p gates, for any prime p ≥ 2 (the circuit class AC0[p]).
Namely, we show that MCSP requires d-depth AC0[p] circuits of size at least exp(N0.49/d), where
N = 2n is the size of an input truth table of an n-variate boolean function. Our circuit lower
bound proof shows that MCSP can solve the coin problem: distinguish uniformly random N -
bit strings from those generated using independent samples from a biased random coin which
is 1 with probability 1/2 + N−0.49, and 0 otherwise. Solving the coin problem with such
parameters is known to require exponentially large AC0[p] circuits. Moreover, this also implies
that MAJORITY is computable by a non-uniform AC0 circuit of polynomial size that also has
MCSP-oracle gates. The latter has a few other consequences for the complexity of MCSP, e.g.,
we get that any boolean function in NC1 (i.e., computable by a polynomial-size formula) can
also be computed by a non-uniform polynomial-size AC0 circuit with MCSP-oracle gates.

Keywords: Minimum Circuit Size Problem (MCSP), circuit lower bounds, AC0[p], coin
problem, hybrid argument, MKTP, biased random boolean functions

1 Introduction

Minimum Circuit Size Problem (MCSP) asks to decide if a given boolean function f : {0, 1}n →
{0, 1} (presented by its truth table of length N = 2n) can be computed by a boolean circuit of
size at most s, for a given parameter 0 ≤ s ≤ 2n. There is no nontrivial algorithm currently
known for MCSP other than the “brute force” enumeration of all circuits of size up to s and
checking if any one of them computes f . On the other hand, while MCSP is obviously in NP,
it is a major open question to decide if MCSP is NP-complete (and there is a growing list of
research papers providing arguments for and against various NP-completeness reductions to MCSP
[KC00, ABK+06, AHM+08, AD14, AHK15, HP15, HW16, MW17]).
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Another natural question is to prove circuit lower bounds (for restricted circuit models) for
MCSP. Here some results are known. Allender et al. [ABK+06] showed that MCSP requires super-
polynomial-size AC0 circuits (constant-depth circuits with AND, OR, and NOT gates). Hirahara
and Santhanam [HS17] proved that MCSP requires almost quadratic-size De Morgan formulas.

It was an open question [AH17, OS17] to prove that MCSP requires super-polynomial AC0[p]
circuits (constant-depth circuits with AND, OR, NOT and mod p counting gates), for a prime
p > 0. We resolve this question in the present paper. Our main result is that MCSP requires
d-depth AC0[p] circuits of size at least exp(N0.49/d), where N = 2n is the size of an input truth
table of an n-variate boolean function.

Previous proof methods of circuit lower bounds for MCSP. The lack of NP-completeness
reductions to MCSP and the scarcity of circuit lower bounds for MCSP underscore the general
phenomenon that there are very few known reductions to MCSP. The main (if not the only one)
use of MCSP inside known reductions is to “break” pseudorandom function generators, an idea
going back to the celebrated paper of Razborov and Rudich [RR97] on “natural proofs”. The point
is that known candidate constructions of pseudorandom function generators produce pseudorandom
functions that do have “small” circuit complexity, whereas truly random functions are known to
require “high” circuit complexity. Thus, an assumed efficient MCSP algorithm can distinguish
between the truth tables of such pseudorandom functions and those of truly random functions,
thereby “breaking” the pseudorandom function generator.

Both previously known circuit lower bounds for MCSP by Allender et al. [ABK+06] and by
Hirahara and Santhanam [HS17] used MCSP’s ability to break pseudorandom function generators
together with the existence of known pseudorandom (function) generators that are provably secure
against AC0 and quadratic-size De Morgan formulas, respectively. The same approach cannot be
applied to the case of AC0[p] circuits as we currently do not have any strong enough pseudorandom
generators secure against AC0[p]!

Our approach. Our approach instead is to reduce the Majority function to MCSP, and use the
known AC0[p] lower bounds against Majority [Raz87, Smo87]. In fact, we give a reduction to MCSP
from the coin problem where one is asked to distinguish between an N -bit uniformly random string,
and an N -bit string sampled so that each bit is independently set to 1 with probability 1/2 − ε
(and to 0 otherwise), for some parameter ε > 0. We then use the result of Shaltiel and Viola [SV10]
showing that any algorithm solving such a coin problem yields an efficient algorithm for computing
the Majority function on inputs of length 1/ε. To conclude super-polynomial-size AC0[p] circuit
lower bounds for MCSP from the known lower bounds for the Majority function, we need to be
able to solve the coin problem for N -bit strings with the parameter ε < 1/poly(logN).

Here is some intuition why MCSP could be useful for solving the coin problem. For N = 2n,
an N -bit random string has binary entropy N . On the other hand, N -bit strings sampled using
a biased coin with probability p = 1/2 − ε of being 1 would likely have close to pN < N/2 ones
only, and so come from a smaller set of about

(
N
pN

)
≈ 2H(p)·N strings of size N , where H is the

binary entropy function. Information-theoretically, we can describe each string with at most pN
ones using about H(p) · N bits. For p � 1/2, we have that H(p) · N � N , and so most biased
functions have a description of bit complexity much less than N . If somehow we could extend this
information-theoretic argument to show that most biased functions will have circuit complexity
noticeably smaller than that of random functions, we’d be done because MCSP would be able to
distinguish between random functions (of higher circuit complexity) and random biased functions
(of lower circuit complexity).

2



Lupanov in 1965 [Lup65] proved that, indeed, biased random functions have circuit complexity
smaller than that of random boolean functions. However, Lupanov’s result applies only to the
case of bias probability p = 1/2− ε for large (close to constant) ε only, and doesn’t give anything
useful for our case of ε < 1/poly(logN). To circumvent the lack of tighter circuit upper bounds for
slightly biased random functions, we employ two new ideas.

First, we show that the circuit complexity of q-random functions is very tightly concentrated
around its expectation, for every probability q. This can be proved using a simple martingale
argument (McDiarmid’s Inequality [McD89]). The point is that the circuit complexity of a given
n-variate boolean function f changes by at most O(n) when we change the value of f on exactly
one n-bit input (which can be simply hard-wired into the new circuit for the modified function).

Secondly, we use a hybrid argument. By Lupanov’s result [Lup65], one can show that for
p = 0.01, almost all p-biased random functions will have circuit complexity noticeably smaller that
2n/n, and in particular, the expected circuit complexity of a p-biased random function is at most
0.1 · 2n/n. On the other hand, for p′ = 1/2, well-known counting arguments show that almost all
such random functions have circuit complexity very close to 2n/n, and in particular, the expected
circuit complexity of a random function is at least 0.9 · 2n/n. Imagine we have t equally spaced
probabilities between p = 0.01 and p′ = 1/2, for some number t to be chosen. Then by the hybrid
argument, there will exist two successive probabilities q and q′ ≈ q+ 1/t, where the expected circuit
sizes for q-random and q′-random functions differ by at least Ω(2n/n)/t.

By the “concentration around the expected circuit size” result mentioned above, we conclude
that MCSP is able to distinguish between most q-random boolean functions and most q′ ≈ q+ 1/t-
random ones. By re-scaling, we conclude that MCSP is able to distinguish between 1/2−1/t-random
function and 1/2-random ones, i.e., that MCSP solves the coin problem for the bias ε = 1/t. Finally,
our concentration result is strong enough to allow us to choose t = 2Ω(n), which yields an exponential
AC0[p] circuit lower bound for MCSP. (To get the quantitatively strongest circuit lower bound for
MCSP, we use the recent AC0[p] lower bounds for the coin problem by [LSS+18], rather than apply
the reduction from the Majority function to the coin problem from [SV10].)

Other results. We are able to generalize our AC0[p] circuit lower bounds to several natural
variants of MCSP. For a circuit class C, let C-MCSP denote the MCSP problem asking about the
C-type circuit complexity of a given truth table. For example, C can be the class AC0, where we ask
about the gate complexity of a smallest AC0 circuit computing a given boolean function, or C can
be the class of boolean formulas, where we ask about the formula (leaf) complexity of a smallest
formula. We show that for both such cases of C, the problem C-MCSP requires exponential-size
AC0[p] circuits. This generalization requires us to re-visit Lupanov’s general circuit upper bounds for
biased random functions. We provide new “hashing-based” arguments for such circuit constructions
that apply to the case of formulas as well as constant-depth circuits and formulas.

As a corollary of our reduction of the coin problem to MCSP and some previous results, we
obtain that every function in NC1 can be computed by a non-uniform AC0 circuit with MCSP
oracle gates. We also show that at least one of the following lower bounds must be true: either
NEXP 6⊂ P/poly, or MCSP 6∈ ACC0.

Finally, we give a new coin-problem based proof of AC0[p] circuit lower bounds for MKTP, a
Kolmogorov-complexity variant of MCSP, re-proving the result of [AH17].

The rest of the paper. We give the necessary definitions and facts in Section 2. We prove the
aforementioned circuit complexity concentration result for random biased functions in Section 3,
and then prove our AC0[p] circuit lower bound for MCSP in Section 4. In Section 5, we give
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corollaries of our main result. We generalize our lower bounds to the case of C-MCSP in Section 6.
The lower bound for MKTP is given in Section 7. Section 8 lists some open questions.

2 Preliminaries

2.1 Complexity basics

For a boolean function f : {0, 1}n → {0, 1}, let size(f) denote the size of a smallest circuit (using
AND, OR, and NOT gates) that computes f . Let size(n) be the maximum of size(f), over all n-
variate boolean functions f . Finally, define sn = E[size(f)] to be the average of circuit complexities
over all n-variate boolean functions.

Below, all logarithms are base 2, unless stated otherwise.
Building on the work by Shannon [Sha49], Lupanov [Lup58] proved the following lower and

upper bounds for size(n).

Theorem 2.1 (Lupanov [Lup58]). For all sufficiently large n ∈ N,

size(n) ≤ 2n

n
+O

(
2n log n

n2

)
.

Moreover, all but o(1) fraction of uniformly random n-variate boolean functions f require

size(f) ≥ 2n

n
+ Ω

(
2n log n

n2

)
.

For the case of n-variate functions with a fixed fraction of 1 inputs, Lupanov [Lup65] proved
the following generalization of his earlier bounds.

Theorem 2.2 (Lupanov [Lup65]). Let f : {0, 1}n → {0, 1} be any boolean function that has the
value 1 on k ≤ 2n−1 inputs, where k ∈ Ω(2n). Then, for all sufficiently large n ∈ N,

size(f) ≤
log
(

2n

k

)
log log

(
2n

k

) +O

(
2n log n

n2

)
.

Moreover, all but o(1) fraction of random such functions f require

size(f) ≥
log
(

2n

k

)
log log

(
2n

k

) + Ω

(
2n log n

n2

)
.

2.2 Probability basics

Theorem 2.3 (McDiarmid’s Inequality [McD89]). Let X1, . . . , XN ∈ {0, 1} be independent random
variables. Let f : {0, 1}n → R be any function such that, for some function c = c(N), for all
1 ≤ i ≤ N and for all b1, . . . , bN , b̃i ∈ {0, 1}, it holds that∣∣∣f(b1, . . . , bN )− f(b1, . . . , bi−1, b̃i, bi+1, . . . , bN )

∣∣∣ ≤ c.
Then, for any λ > 0,

Pr [|f(X1, . . . , XN )−E [f(X1, . . . , XN )]| ≥ λ] ≤ 2 · exp

(
2λ2

Nc2

)
.

Roughly speaking, the inequality states that with high probability the value of f will be of
distance at most O(

√
N · c) around its mean.
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2.3 Coin problem

A coin problem is the problem to distinguish between two coins (boolean-valued random variables),
where one coin has probability p of being 1, and the other coin probability q > p. Usually, p = 1/2−ε
and q = 1/2 + ε, for some ε > 0; or, p = 1/2− ε and q = 1/2. By a simple “translation argument”,
it is possible to show that all of these problems are essentially equivalent. For completeness, we
state this argument next.

Claim 2.4 (Translation Argument). Let 0 < p ≤ q < 1, ε > 0. Suppose C is a circuit of size S
that solves the p(1− ε) versus p coin problem on inputs of length N with advantage α. Then, there
exists a circuit C̃ of size at most S that solves the q(1−ε) versus q coin problem on inputs of length
N with advantage at least α.

Proof. For p ∈ (0, 1), we denote by µp the product distribution on {0, 1}N where each bit is
independently sampled to be 1 with probability p, and 0 otherwise. Let C be a circuit of size S
that solves the p(1− ε) versus p coin problem with advantage

α := Pr
x∼µp(1−ε)

[C(x)]− Pr
x∼µp

[C(x)].

We construct a distribution over circuits C ′ that achieves the same advantage on the q(1−ε) versus
q coin problem. The randomized circuit C ′ is defined as follows: “For each input bit xi, let x′i = xi
with probability p/q and x′i = 0 otherwise. Apply C on (x′1, . . . , x

′
N ).” Note that, by design, if x is

distributed according to a µq then x′ is distributed according to µp, and if x is distributed according
to µq(1−ε), then x′ is distributed according to µp(1−ε). We get a distribution over circuits C ′ that
solves the q(1− ε) versus q coin problem with advantage at least α. By averaging, there must exist
a deterministic circuit C̃ that solves the q(1− ε) versus q coin problem with advantage at least α.
Note that C̃ is obtained from C ′ by fixing the internal randomness that C ′ used to decide for each
1 ≤ i ≤ N whether to set x′i = xi or x′i = 0. With those choices fixed, C̃(x1, . . . , xN ) is just a

restriction of C(x1, . . . , xN ) where some xi’s are set to 0. Hence, the size of C̃ is at most that of
C, as claimed.

Theorem 2.5 ([SV10]). Let A be an algorithm that distinguishes, with constant distinguishing
probability, between n-bit uniformly random strings, and n-bit strings sampled so that each bit is
independently set to 1 with probability 1/2 − ε (and to 0 otherwise). Then there is a non-uniform
AC0 circuit of size poly(n/ε) that computes the majority function on binary inputs of length 1/ε,
using A-oracle gates.

Using the theorem above as well as the well-known lower bound for the majority function against
AC0[p] circuits, for any constant prime p, we can deduce that any algorithm solving the coin problem
with bias ε on n-bit inputs requires AC0[p] depth d circuits of size at least exp((1/ε)1/O(d)). This
lower bound has been recently sharpened.

Theorem 2.6 ([LSS+18]). Let A be a boolean function that distinguishes, with constant
distinguishing probability, between n-bit uniformly random strings, and n-bit strings sampled so
that each bit is independently set to 1 with probability 1/2− ε (and to 0 otherwise). Then any depth
d AC0[p] circuit computing A must have size at least exp(Ω((1/ε)1/(d−1))).
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3 Concentration of Circuit Complexity

For every n ≥ 1, let µ be any product distribution over {0, 1}N , where N = 2n. Recall that size(f)
is the size of a smallest circuit computing a boolean function f . For each integer n ≥ 1, define

sµn = Ef∼µ [size(f)] ,

the expectation of size(f) over n-variate boolean functions f whose N -bit truth tables are sampled
according to µ. We show that a random n-variate boolean function sampled from µ is likely to
have its circuit complexity very close to the expected circuit complexity sµn.

Theorem 3.1. For µ and sµn as defined above, if a boolean function f : {0, 1}n → {0, 1} is chosen
at random according to distribution µ, then, with probability at least 1− 2−n,

|size(f)− sµn| ≤
√
N · n2.

Proof. Observe that for any two n-variate boolean functions f and g that differ on exactly one input
a ∈ {0, 1}n, we have that |size(f) − size(g)| ≤ O(n). Indeed, suppose, without loss of generality,
that size(f) ≤ size(g). Then we can compute g as follows: “Given z ∈ {0, 1}n, check if z = a. If
so, then output the bit b = g(a). Otherwise, use the circuit for f to output f(z).” More precisely,
if C is a circuit computing f , then the circuit D for g can be described as

D(z) := (b ∧ (∧ni=1(zi = ai))) ∨ (C(z) ∧ (∨ni=1(zi 6= ai))) , (1)

where (zi = ai) is defined to be zi for ai = 1, and the negation zi for ai = 0; and (zi 6= ai) is the
negation of (zi = ai). Clearly, the size of D is that of C plus O(n).

Let X1, . . . , XN ∈ {0, 1} be independent random variables sampled from the product
distribution µ. We apply McDiarmid’s Inequality of Theorem 2.3 to the function size : {0, 1}N → N,
which, as we just argued, differs by at most c = O(n) on any two truth tables that agree in all but
one coordinate. We get the desired concentration result by choosing λ =

√
N · n2. That is, all but

exp(−n) fraction of µ-random n-variate boolean functions f have their circuit size size(f) within√
N · n2 of the expected circuit size sµn.

4 Main theorem

Theorem 4.1. Let p ≥ 2 be any prime. For any depth d > 0 and large enough input size N = 2n,
MCSP on N -bit truth tables requires depth d AC0[p] circuits of size exp(Ω(N0.49/(d−1))).

Proof. Let t = d20.49ne. Consider an arithmetic sequence of probabilities (p0, p1, p2, ...., pt) with
p0 = 0.01, pt = 0.5 and pi = p0 + i · 0.49/t. For each i = 0, . . . , t, let µi be the product distribution
on {0, 1}N , where each bit is independently sampled to be 1 with probability pi, and 0 with
probability 1− pi. Let

si = sµ
i

n = Ef∼µi [size(f)] .

By Lupanov’s estimates of Theorem 2.1, we have

st ≥ (1− o(1)) · 2n

n
≥ 0.9 · 2n

n
.

By the Chernoff bound, almost all n-variate boolean functions sampled according to µt will assume
the value 1 on at most k = 0.011 ·N inputs. By Theorem 2.2, we have

s0 ≤ H(0.011) · 2n

n
+ o

(
2n

n

)
≤ 0.1 · 2n

n
,
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where H() is the binary entropy function. It follows that

st − s0 ≥ 0.8 · 2n

n
.

This means that there must be an i such that si+1 ≥ si+Ω(20.51n/n). Let s∗ = (si+si+1)/2. By
circuit complexity concentration given in Theorem 3.1, we get that, with high probability, n-variate
random boolean functions sampled from µi have circuit size smaller than s∗, and those sampled
from µi+1 have circuit size larger than s∗. Hence, MCSP(x, s∗) can distinguish between µi and
µi+1, with a constant distinguishing probability.

Finally, assume by contradiction that MCSP ∈ AC0[p] of size S and depth d. Let n be large
enough, and let N = 2n. Then, by fixing the second input of MCSP to s∗, we get an AC0[p] circuit
that on N -bit inputs solves the coin problem distinguishing between pi and pi+1. By Claim 2.4,
there exists a circuit of size at most S and depth at most d that solves the (1−ε)/2 versus 1/2 coin
problem for ε = 1 − pi/pi+1 = Θ(1/t) = Θ(N−0.49). However, the latter implies by Theorem 2.6
that S ≥ exp(Ω(ε−1/(d−1))) = exp(Ω(N0.49/(d−1))).

5 Consequences

Below, whenever we talk about circuit classes such as AC0, ACC0, and TC0, we mean non-uniform
circuit classes.

Using Theorem 2.5, we get the following corollary to Theorem 4.1 regarding the MAJORITY
function, denoted MAJ.

Corollary 5.1. MAJ ∈ (AC0)MCSP.

Combined with the inclusion NC1 ⊆ (TC0)MCSP of [OS17], Corollary 5.1 yields the following.

Corollary 5.2. NC1 ⊆ (AC0)MCSP.

In fact, using the same techniques, we can prove something more general.

Theorem 5.3. Let C ⊆ P/poly be any complexity class that has a complete problem under TC0-
computable reductions that is also random-self-reducible via a TC0-computable reduction. Then we
have

C ⊆ (AC0)MCSP.

Proof sketch. It follows from [CIKK16] that any function f ∈ P/poly has a non-uniform (TC0)MCSP

circuit C of polynomial size that agrees with f on all but an inverse polynomial fraction of inputs.
If f is random-self-reducible via a TC0 reduction, we can recover from C a new polynomial-size
(TC0)MCSP circuit computing f exactly (on all inputs). Applying Corollary 5.1 concludes the
proof.

As the class GapL has Determinant as a complete problem under AC0 reductions (see [All04]
for a survey on logspace counting complexity classes), we get the following.

Corollary 5.4. GapL ⊆ (AC0)MCSP.1

1The potentially bigger class DET is the class of languages that are NC1-Turing reducible to computing the
determinant of an integer matrix [Coo85]. It is not immediately clear if DET ⊆ (AC0)MCSP. Perhaps, one can use the
techniques of [AH17] who showed such a result for MKTP.
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The following is a non-uniform version of a similar “Karp-Lipton”-style “collapse” theorem from
[IKV18], which we state just for the class EXP.

Theorem 5.5. If EXP ⊆ P/poly, then EXP ⊆ (AC0)MCSP.

Proof. Using TC0-computable locally list-decodable binary codes of [GGH+07], we get that EXP
contains a complete language that is random-self-reducible via a TC0-computable reduction. We
then appeal to Theorem 5.3.

We do not know if MCSP is NP-complete. There is a line of research showing that MCSP (or its
variants) can’t be NP-complete under very restricted kinds of reductions (e.g., “local” reductions
of [MW17]). One corollary of Theorem 5.5 is that it will be difficult to rule out non-uniform Turing
AC0 reductions from SAT to MCSP.

Corollary 5.6. If SAT 6∈ (AC0)MCSP, then EXP 6⊆ P/poly.

Finally, while we don’t know how to disprove that MCSP ∈ ACC0, we get that at least some
lower bound must be true.

Corollary 5.7. Either NEXP 6⊆ P/poly, or MCSP 6∈ ACC0.

Proof. Towards a contradiction, suppose that both (1) NEXP ⊆ P/poly, and (2) MCSP ∈ ACC0.
By the Easy Witness Lemma of [IKW02], (1) implies that NEXP = EXP. Then by Theorem 5.5, we
get that NEXP ⊆ (AC0)MCSP. Combining this with (2) yields that NEXP ⊆ ACC0. But the latter
contradicts the known lower bound of [Wil14].

6 Generalizations

Here we show that, for a number of typical circuit classes C, our lower bound proof (and a reduction
from MAJORITY) works also for C-MCSP. In particular, we will show that both AC0-MCSP and
Formula-MCSP require exponential AC0[p] circuit lower bounds.

Our lower bound for MCSP used two main ingredients: (1) circuit size concentration for random
(biased) boolean functions, and (2) a noticeable difference between most likely circuit sizes for
uniformly random and biased boolean functions (where each bit of the truth table is 1 with a small
constant probability, say 0.01).

For property (1), we note that the concentration argument only needs the Lipschitz property
of a given circuit size measure, which comes from the fact that changing a boolean function on a
single n-bit input may change the circuit size of the function by at most O(n) additive term. This
holds for virtually every reasonable circuit model, as the proof of Theorem 3.1 shows; there is a
potential increase in depth for constant-depth circuits, but this can be avoided for the case where
the circuit size is defined to be the total number of gates in the constant-depth circuit (see the
proof of Corollary 6.2).

For property (2), we need a Shannon-style counting argument to show that most random n-
variate functions have at least certain size S in a given circuit model C, as well as a Lupanov-style
argument that (most) boolean functions with very few (a small constant fraction α of) 1s have
C-circuit complexity at most some constant fraction δ of S, for some 0 < δ < 1 (dependent on α).

Property (2) is known for the case of boolean circuits, as implied by Lupanov’s Theorem 2.2,
and is known for formulas, by the work of Pippenger [Pip76]. Moreover, it is possible to use the
celebrated constructions of Lupanov, giving tight upper bounds for circuit complexity [Lup58] and
formula complexity [Lup62] for all boolean functions, to show that biased random functions have
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relatively small circuits as well as small formulas (see the appendix). However, we give a different
argument below (based on some hashing ideas) that will allow us to reduce the problem of showing
small circuit complexity of a random biased boolean function to the known worst-case upper bounds
for boolean function on fewer variables. Using such known worst-case upper bounds for the classes
of circuits, formulas, and constant-depth circuits (counting the number of gates), we then obtain
the required upper bounds for the circuit complexity of constant-biased random functions in these
circuit models.

6.1 Hashing construction

As a warm-up, we provide a hashing-based argument where we use pairwise independent
permutations. In the following subsection, we will show how to get rid of actual hash functions,
and use appropriate identity functions instead.

First, we explain a single step of our overall construction, and then show how to combine a few
such steps to get a relatively small circuit for any given biased function.

Let H be a family of pairwise-independent permutations from {0, 1}n to {0, 1}n. For h ∈ H and
any 1 ≤ m ≤ n, denote by h[m] the function from {0, 1}n to {0, 1}m which on any input x ∈ {0, 1}n
outputs the first m bits of the output h(x). It is easy to see that for any m > 0, the family of
functions h[m] is a family of pairwise-independent hash functions. Additionally, for h ∈ H and any
integer 1 ≤ i ≤ n, denote by hi the function from {0, 1}n to {0, 1} which on any input x ∈ {0, 1}n
outputs the ith bit of h(x).

Construction Let f : {0, 1}n → {0, 1} be any boolean function with at most α � 1/2 fraction
of 1s, for some constant α > 0. Denote by A ⊆ {0, 1}n the set of all inputs x ∈ {0, 1}n such that
f(x) = 1.

• Pick a random permutation h1 from H. Set m = n− log(1/(2α)), so that the range of h
[m]
1

is of size (2α)2n.

• For every given input a ∈ A, the probability that there is another a′ ∈ A (a′ 6= a) such that

h
[m]
1 (a) = h

[m]
1 (a′) (i.e., a collides with some other element of A) is at most 1/2. Indeed, the

required probability is, by the union bound, at most∑
a′∈A\{a}

Pr[h
[m]
1 (a′) = h

[m]
1 (a)] ≤ α2n(2α2n)−1 = 1/2,

where we used the pair-wise independence of hash functions h[m]. Call an element a ∈ A

alone in its bucket if there is no other a′ ∈ A such that h
[m]
1 (a) = h

[m]
1 (a′). We get that the

expected number of elements in A that are alone in their buckets is at least half of A.

• Next, by averaging, there exists a function h1 ∈ H such that, for at least 1/2 of the
strings a ∈ A, each of these a is alone in its bucket, i.e., no other a′ ∈ A exists such that

h
[m]
1 (a′) = h

[m]
1 (a). Fix such a function h1.

• Define new boolean functions g0, g1, . . . , gn−m : {0, 1}m → {0, 1} as follows. For y ∈ {0, 1}m,
define

g0(y) =

{
1 if there exists a unique a ∈ A such that h

[m]
1 (a) = y

0 otherwise.

9



For each 1 ≤ i ≤ (n−m), define

gi(y) =

{
hm+i

1 (a) if there exists a unique a ∈ A such that h
[m]
1 (a) = y

0 otherwise.

Note that for any x ∈ {0, 1}n, if g0(h
[m]
1 (x)) = 1 and, for each i ∈ [n−m], gi(h

[m]
1 (x)) = hm+i

1 (x),
then we know that x ∈ A and so f(x) = 1. Call such an x ∈ A decided. By the above, we know
that at least 1/2 fraction of strings in A are decided, and the correct value of f on these strings is
determined by the formula

φ1(x) = g0(h[m](x)) ∧
∧

i∈[n−m]

(
gi(h

[m](x)) = hm+i(x)
)
.

This algorithm determines the value of f on at least 1/2 fraction of strings in A. A natural idea
is to continue recursively on the remaining undecided strings in A, where we only have at most
1/2 of A to work with, and so we set the next value of m to be n − log(1/α) and re-define A to
be the subset of undecided elements in the previous version of A. After at most t ≤ log(α2n) ≤ n
iterations, all strings in A are decided, and so the formula for f is

t∨
i=1

φi(x).

The circuit complexity of one step of this algorithm is the circuit size of computing a pairwise
independent permutation on {0, 1}n, plus the circuit sizes of n−m boolean function g on m inputs
each. The circuit complexity of an m-variate function g will come from our assumed Lupanov-style
circuit upper bound for a given circuit class C. A pairwise independent permutation can be easily
computed by a poly(n)-size general circuit or a formula. This circuit size of the permutations will
be dominated by the sizes of the functions gi over all t iterations of the algorithm.

6.2 Hashing construction without hash functions

Here we get rid of pairwise independent permutations (hash functions), but at the expense that
our result will apply only to random biased functions (as opposed to the previous section where we
could handle every function with not too many 1s in its truth table).

Construction Let f : {0, 1}n → {0, 1} be a random α-biased boolean function, for some constant
0 < α� 1/2.

• Set ` = (log(1/2α))/c, for some constant c > 0 to be determined. Set m = n− `.
Partition the set [n] into t sets (for t to be determined) S0, S1, . . . , St−1, where |Si| = ` + i,
for all 0 ≤ i ≤ t − 1. Think of S0 to be the last ` elements in the string 1, 2, . . . , n; S1 the
preceding `+ 1 elements; and so on.

For a string x ∈ {0, 1}n and a subset S ⊆ [n], we denote by xS the substring of x restricted

to positions in S, and by xS the substring restricted to positions in the complement [n] \ S.

In iteration i, for 0 ≤ i ≤ t− 1, a given input x ∈ {0, 1}n will be “hashed” to bucket xSi .

10



• Consider iteration 0. For every fixed input x ∈ {0, 1}n, the probability that f(x) = 1 and

that there is another x′ ∈ {0, 1}n in the same bucket xS0 such that f(x′) = 1 is at most

p0 = α · (2` − 1) · α ≤ α2 · 2`,

since all x′ in the same bucket as x are distinct inputs, and f is an α-biased random function.
For x such that f(x) = 1, we say that x is undecided after iteration 0 if there is another x′ in
the same bucket as x such that f(x′) = 1.

• For 0 < i < t, we say that a string x ∈ {0, 1}n such that f(x) = 1 is undecided after i
iterations if x was undecided after i− 1 iterations, and there is another string x′ in the same
bucket (i.e., xSi = (x′)Si) such that x′ was also undecided after i−1 iterations (and such that
f(x′) = 1).

• By induction, for every given x ∈ {0, 1}n, the probability pi that x is undecided after i
iterations is at most

pi ≤ pi−1 · (2`+i − 1) · pi−1 ≤ p2
i−1 · 2`+i.

The reason is, given that x was undecided after i − 1 iterations, its neighbors x′ in bucket
xSi are different from all its neighbors in all previous buckets xS0 , . . . , xSi−1 . So the event
that some such x′ was undecided after i− 1 iterations is independent from that for x, and its
probability is at most pi−1.

Solving the recurrence above, we get that

pt ≤ α2t+1 · 2c2t+1·` ≤ (2c`α)2t+1
,

for some constant c > 0 (independent of ` and α). This is the constant c we use in our
definition of `, so that

2c`α ≤ 1/2,

and hence pt ≤ 2−2t .

• As ` is a constant (dependent on α), we can partition the set [n] into at least t = 2 log n sets
of size `, `+ 1,. . . , `+ t− 1. For this t, we get that pt ≤ 2−n

2
.

• The expected number of inputs x ∈ {0, 1}n that are still undecided after t iterations is at most
2n−n

2 � 1. By Markov’s inequality, the probability over the choice of an α-biased function f
that there will exist at least some undecided input x after t iterations is at most 2n−n

2
. Thus

for almost all α-biased functions f , no undecided inputs will remain after t iterations.

Let f be any such function. We will next construct a circuit for f .

• For each iteration 0 ≤ i < t, define new boolean functions gi0, g
i
1, . . . , g

i
`+i : {0, 1}n−(`+i) →

{0, 1} as follows. For y ∈ {0, 1}n−(`+i), define

gi0(y) =

{
1 if ∃! x ∈ f−1(1) s.t. xSi = y, and x was not decided after (i− 1) iterations

0 otherwise.

For each 1 ≤ j ≤ `+ i, define

gij(y) =

{
(xSi)j if ∃! x ∈ f−1(1) s.t. xSi = y, and x was not decided after (i− 1) iterations

0 otherwise.

11



• Define
φi(x) = gi0(xSi) ∧

∧
j∈[`+i]

(
gij(x

Si) = (xSi)j

)
.

• Finally, we claim that

f(x) =
t−1∨
i=0

φi(x).

The circuit complexity of one step of this algorithm is the circuit sizes of `+ i boolean functions
gj on n− (`+ i) inputs each. The circuit complexity of an m-variate function g will come from our
assumed Lupanov-style circuit upper bound for a given circuit class C.

6.3 Small circuit complexity of random biased functions

We use the above construction to prove the following.

Theorem 6.1. Let 0 < α < 1/2 be any constant. For all but o(1) fraction of α-biased n-variate
random functions f , we have

1. circuit-size(f) ≤ O(α · log 1/α) · 2n

n ,

2. (AC0)-formula-size(f) ≤ O(α · log 1/α) · 2n

logn , and

3. AC0-circuit-size(f) ≤ O(α · log 1/α) · 2n/2 (where consider the gate complexity of a given
constant-depth circuit); moreover, the upper bound is for some fixed depth d0 > 0 (independent
of f).

Proof. We will use the construction f(x) = ∨ti=0φi(x) from the previous subsection. For general
circuits, the circuit complexity of φi is at most

(n−m+ 1− (i− 1)) ·O

(
2m−(i−1)

m− (i− 1)

)
+ poly(n),

using the O(2n/n) circuit size upper bound for all n-variate boolean functions [Lup58]. So, over all
t iterations, the circuit size will be at most

O(n−m+ 1) ·
t∑
i=1

2m−(i−1)

m− (i− 1)
+ t · poly(n).

Let t0 be the smallest integer so that at the end of t0 iterations m− (t0 − 1) ≥ n/2. We split the
sum into two sums as follows:

t∑
i=1

2m−(i−1)

m− (i− 1)
=

t0∑
i=1

2m−(i−1)

m− (i− 1)
+

t∑
i=t0+1

2m−(i−1)

m− (i− 1)

≤ 2

n
·
t0∑
i=1

2m−(i−1) +
t∑

i=t0+1

2m−(i−1)

≤ 4

n
· 2m +O

(
2n/2

)
≤ (9α) · 2n

n
.

(2)
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Hence, the overall circuit complexity of computing f is at most

O(α · log(1/α)) · 2n

n
,

proving item (1).
To prove item (2), we observe that the construction of the previous subsection actually produces

a (fixed constant-depth) formula for a given function f , if we use (constant-depth) formulas for
all intermediate functions gij . As every n-variate boolean function has a (fixed constant-depth)
formula of size O(2n/ log n) [Lup62], we can follow similar calculations as in case of item (1) above
to conclude the required (constant-depth) formula size upper bound.

Finally, for item (3), we use the fact that every n-variate boolean function has an AC0 circuit of
a fixed depth (at most 3) of size O(2n/2), where we count the number of gates in the circuit [Dan96].
We observe that the construction from the previous subsection in fact produces a constant-depth
circuit, if we use constant-depth circuits for all intermediate functions gij . Moreover, the depth
of the resulting circuit is some fixed constant. So over all t iterations, the circuit size of a given
function f will be at most

O(n−m+ 1) ·
t∑
i=1

2(m−(i−1))/2 + t · poly(n),

which simplifies to at most

O(log(1/α)) ·O(2m/2) ≤ O(α · log(1/α)) · 2n/2,

as required.

Using Theorem 6.1, we conclude the following.

Corollary 6.2. Let C be the class of general circuits, or formulas, or constant-depth AC0 circuits.
For any prime p ≥ 2 and any depth d > 0 and large enough input size N = 2n, C-MCSP on N -bit
truth tables requires depth d AC0[p] circuits of size at least exp(Ω(N0.49/(d−1))).

Proof. As observed earlier, our lower bound proof for MCSP requires three ingredients: the Lipschitz
property of the circuit complexity measure, a Shannon-style lower bound on the complexity measure
for random n-variate boolean functions, and a O(α log(1/α)) factor smaller upper bound on the
complexity measure for random α-biased boolean functions (which can be made an arbitrary
constant factor ε smaller than the corresponding Shannon-style upper bound by choosing the
constant bias α > 0 to be sufficiently small).

The Lipschitz property is easily seen to hold for both general circuits and formulas. For constant-
depth circuits, where we count the number of gates, it also holds, provided the depth of our circuits
is at least 3. We sketch the argument next.

We may assume that the circuit has alternating levels of ANDs and ORs, with negations on
the bottom variables level. Without loss of generality, the top gate is an OR. (The other case is
symmetric.) Case 1. We want to flip the value on a ∈ {0, 1}n from 0 to 1. Add an AND of xaii ’s,
and feed this AND into the top OR gate. (Use just one extra gate.) Case 2: We want to flip from
1 to 0 on a ∈ {0, 1}n. Add an OR of x1−ai

i ’s, and feed this OR into every AND-gate just one
level below the top OR-gate. (Use just one extra gate.) Note that the depth doesn’t change, if the
original circuit is of depth d ≥ 3.

The Shannon-style lower bounds for random n-variate functions are known for general circuits
Ω(2n/n), formulas Ω(2n/(log n)), and constant-depth circuits Ω(2n/2) (see, e.g., [Juk12]). Finally,
Theorem 6.1 gives matching upper bounds for biased functions. The proof follows.
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7 Circuit lower bounds for MKTP via the coin problem

Here we show how to re-prove a known AC0[p] circuit lower bound for MKTP [AH17], using the coin
problem. This was the starting point in our attempt to prove an AC0[p] lower bound for MCSP. For
MKTP, we managed to show that biased random strings have a noticeably smaller KT complexity
than that of uniformly random strings, where the bias 1/2− ε can be chosen for a sufficiently small
ε so that we immediately get an AC0[p] circuit lower bound for MKTP using Theorem 2.6. We
provide the details next.

We first define the KT complexity [ABK+06]. Fix a universal random-access Turing machine
U . The KT complexity of a string x ∈ {0, 1}N is defined as the

min{|d|+ t | ∀ 0 ≤ i ≤ N + 1 Ud(i) = xi in at most t steps},

and xN+1 = ⊥. In other words, x can be computed at every position i in time at most t by a TM
U that has random access to some binary string d, and we want to minimize the total sum of the
length of such an auxiliary string d and the time bound t.

MKTP is then naturally defined as follows: Given x ∈ {0, 1}N and a parameter s, decide if the
KT complexity of x is at most s.

To prove a super-polynomial AC0[p] circuit lower bound for MKTP via the coin problem
approach (using Theorem 2.6), it would suffice to show that the MKTP oracle can distinguish
between uniformly random N -bit strings and those where each bit is sampled, independently, with
probability 1/2 − ε, for some ε � 1/poly logN . We’ll show how to do this for ε = N−γ , for some
γ > 0 (in fact, for γ ≈ 1/6).

What we need is to show that a random biased N -bit string can be compressed to have its
KT complexity noticeably smaller than that of a uniformly random N -bit. Let q = 1/2− ε be the
probability for sampling each bit to be 1 in a random biased string. By standard concentration
bounds, we know that a random biased N -bit string will have, with very high probability, the
number of 1s very close to K = qN . For the simplicity of exposition, we will assume that our
random biased strings have at most K = qN ones in them. We then show that every N -bit string
with (at most) K ones has its KT complexity much less than N , which is the lower bound on the
KT complexity of a uniformly random N -bit string.

It is natural to think of an N -bit string with K ones as a subset of size K in the universe of size
N . As there are exactly

(
N
K

)
such subsets, the minimal bit complexity to represent any one of such

subsets is OPT = log2

(
N
K

)
. Such an information-theoretically optimal encoding of K-size subsets

of the N -size universe is known, and is achieved by using the combinatorial number system where
we represent each such subset by the unique number of the form(

cK
K

)
+ · · ·+

(
c2

2

)
+

(
c1

1

)
.

In more detail, suppose we have x ∈ {0, 1}N where X has exactly K ones. For the base case,
when K = 0, we output 0. For K > 0, we associate with x an integer number using the following
recursive procedure: if xN = 1, then output

(
N−1
K

)
+ R1, where R1 is the recursively computed

integer associated with N − 1-bit prefix of x and the parameter K − 1; if xN = 0, then output R0,
which is the integer associated with the N − 1-bit prefix of x and the parameter K.

Note that the final integer associated with a given K-size subset x ∈ {0, 1}N has value at most(
N
K

)
(using Pascal’s identity that

(
N
K

)
=
(
N−1
K−1

)
+
(
N−1
K

)
), and so has the optimal bit complexity.

The encoding is efficient (as outlined above). The decoding is also efficient: given an integer B
encoding some unknown K-size subset x ∈ {0, 1}N , if B ≥

(
N−1
K

)
, then set xN = 1, and recursively
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decode B −
(
N−1
K

)
for a K − 1-size subset of the N − 1-size universe; otherwise, set xN = 0, and

recursively decode B for a K-size subset of the N − 1-size universe. The running time of such a
decoding algorithm is clearly poly(N), and can be shown to be about O(N2).

For the KT complexity of a string x ∈ {0, 1}N with K ones, we could define d to be the integer
encoding this K-size subset, and then define Ud(i) to be an algorithm that does the decoding of d
to get all the bits of x. The problem with this is that the runtime to do a complete decoding of
d into x is more than N , which is too much. However, the decoding we do is global, recovering all
bits xi simultaneously, whereas we just need to give a local decoding algorithm: given i, recover xi.

Encoding: To get a locally decodable representation for our string x ∈ {0, 1}N , we partition
x into blocks of size b (for b to be determined). For each block j, 1 ≤ j ≤ N/b, let Ki be

the number of ones in that block. Note that
∑N/b

j=1Kj = K. Given Kj , encode each block j

information-theoretically optimally as described above, using at most log2

(
b
Kj

)
bits. Write the

resulting encodings of all blocks one after the other; add N/b pointers (of at most logN bits each)
that point to the beginnings of the encodings of the blocks; add N/b numbers Kj ’s to the encoding.
We get that the total bit size of the overall encoding of x is at most

O(N/b)(logN + log b) +

N/b∑
j=1

dlog2

(
b

Kj

)
e.

The latter sum is at most

N/b∑
j=1

log2

(
b

Kj

)
+N/b = log2

N/b∏
j=1

(
b

Kj

)
+N/b ≤ log2

(
N

K

)
+N/b,

since the number of sets with Kj ones in block j is at most the number of all subsets of [N ] with
K ones. Overall, the encoding size is OPT +O(N logN/b).

Decoding: Given i ∈ [N ], we first figure out which block j it is in, and then decode that entire
block (after looking up its number of ones in Kj and its compressed image). As discussed earlier,
the decoding runs in time about O(b2).

Upper-bounding the KT complexity: To keep the KT complexity of x low, we choose b to be
N1/3. Then the KT complexity of x is at most OPT +O(N2/3).

Finally, we show that MKTP 6∈ AC0[p] as follows. Recall that we consider random biased strings
of length N where the bias probability is q = 1/2− ε. Let K = qN be the expected number of ones
in a typical biased string, and let’s assume that most biased strings have at most K ones in them
(for simplicity). We get that for such a biased string, its KT complexity is at most

log2

(
N

K

)
+O(N2/3) ≈ H(q) ·N +O(N2/3),

where H is the binary entropy function. For q = 1/2− ε, we can estimate H(q) ≈ 1−O(ε2). Thus,
to have the KT complexity of a typical q-biased N -bit string to be strictly less than N , we need
N ·O(ε2)−O(N2/3) > 0, which implies that we need ε > Ω(N−1/6). This implies by Theorem 2.6
that MKTP on inputs of size N requires AC0[p] circuits of depth d of size at least exp(Ω(N1/6(d−1))).
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8 Open questions

We managed to find a work-around the lack of a tighter Lupanov-style upper bound on the circuit
complexity of just slightly biased random functions where the bias probability is arbitrarily close to
1/2 (as opposed to the bias probability being a small constant bounded away from 1/2). Our proof
would be much more direct and constructive if we had such refinements of Lupanov’s circuit upper
bounds for biased boolean functions (since then we could have proceeded similarly to our proof for
the MKTP case in the previous section). Can one prove such tighter circuit upper bounds?

Our current circuit lower bound applies to MCSP, but doesn’t seem to apply for its average-case
version, the Razborov-Rudich natural property [RR97]. Can one show such an extension?

Finally, we showed (Corollary 5.7) that either NEXP 6⊆ P/poly or MCSP 6∈ ACC0. For the proof,
we used the original Easy Witness Lemma of [IKW02], the existence of random-self-reducible
problems in EXP, plus the known lower bound that NEXP 6⊆ ACC0 [Wil14]. Given the new Easy
Witness Lemma and the improved circuit lower bound that NQP = NTIME[npoly logn] 6⊆ ACC0

[MW18], it is natural to ask the following: Can we show that either NQP 6⊆ P/poly or
MCSP 6∈ ACC0? Our current proof techniques rely on the existence of a random-self-reducible
problem complete for EXP, and no such problem is known for the class NQP.
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A Biased functions have small circuit complexity

Here we show how to use Lupanov’s original construction of optimal circuits and formulas to get
the corresponding smaller upper bounds for biased random functions. This provides an alternative
proof for circuits and formulas of our Theorem 6.1. (However, to get the result for constant-depth
circuits, we seem to need to use some kind of hashing-based argument.)

We will prove the following.

Theorem A.1. Let 0 < α < 1/2 be any constant. For all but o(1) fraction of α-biased n-variate
random functions f , we have

size(f) ≤ H(2α) · 2n

n
· (1 + o(1)),

where H is the binary entropy function.

First we recall Lupanov’s circuit upper bound 2n

n (1 + o(1)) for all n-variate boolean functions,
and then show a small modification that would yield smaller circuit size for most biased random
n-variate functions.

A.1 Original Lupanov’s construction

We follow the presentation in Wegener’s book [Weg87]. The truth table of a given Boolean function
f(x1, . . . , xn) is presented in the so-called (k, s)-form: the rows of the truth table are labeled by
all binary k-tuples (corresponding to the values of x1, . . . , xk), and the columns by all binary
(n − k) tuples (corresponding to the values of xk+1, . . . , xn); thus the value of f(a1, . . . , an) is at
the intersection of the row (a1, . . . , ak) and the column (ak+1, . . . , an). In addition, the rows are
divided into p disjoint blocks such that each block contains exactly s rows, except possibly for the
last block that may contain 0 < s′ ≤ s rows. For a suitable choice of parameters k and s, we can
decompose the given function f into a collection of simpler functions of low circuit complexity so
that combining the circuits for these simpler functions yields a circuit for the original function f of
size 2n/n+ o(2n/n). Below we give more details.

Let us denote by Ai, 1 ≤ i ≤ p, the ith block of s rows (s′ rows if i = p) in the (k, s)-
representation of the truth table of f(x1, . . . , xn). We define the following functions fi, 1 ≤ i ≤ p:

fi(x1, . . . , xn) =

{
f(x1, . . . , xn) if (x1, . . . , xk) ∈ Ai,
0 otherwise.

It is clear that f = f1 ∨ · · · ∨ fp.
For 1 ≤ i ≤ p and w ∈ {0, 1}s (w ∈ {0, 1}s′ for i = p), we denote by Bi,w the set of those

columns in the (k, s)-representation whose intersection with the rows in Ai is equal to w. We define

fi,w(x1, . . . , xn) =

{
fi(x1, . . . , xn) if (xk+1, . . . , xn) ∈ Bi,w,
0 otherwise,

for all 1 ≤ i ≤ p and w ∈ {0, 1}s (w ∈ {0, 1}s′ for i = p). Obviously, f is just a disjunction of all
fi,w’s.
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Further, we split each fi,w into the following two functions:

f1
i,w(x1, . . . , xn) =

{
1 if (x1, . . . , xk) is the jth row in Ai and wj = 1 (for some j),

0 otherwise,

and

f2
i,w(x1, . . . , xn) =

{
1 if (xk+1, . . . , xn) ∈ Bi,w,
0 otherwise.

We have fi,w = f1
i,wf

2
i,w.

Finally, we write f as follows:

f(x1, . . . , xn) = ∨i ∨w [f1
i,w(x1, . . . , xk)f

2
i,w(xk+1, . . . , xn)], (3)

where i ranges from 1 to p, and w ranges over all binary strings of length s (s′ for i = p).
Let us denote by W the upper bound on the number of different binary strings obtained in

the intersection of any block Ai with the columns of the (k, s)-representation of f . Computing
f(x1, . . . , xn) proceeds in the following steps:

1. Compute all minterms on {x1, . . . , xk} and {xk+1, . . . , xn}. (Recall that a minterm is a
conjunction of literals.) This needs at most O(2k + 2n−k) gates [Weg87, Lemma 4.1 (page
75)].

2. Compute all functions f1
i,w by their DNF’s (the minterms are already computed). This needs

at most 2kW gates.

3. Compute all functions f2
i,w by their DNF’s (the minterms are already computed). This needs

at most p2n−k gates.

4. Compute f according to (3) (all f1
i,w’s and f2

i,w’s are already computed). This needs at most
2pW gates.

Thus, recalling that p ≤ 2k/s+ 1, we get that the total number of gates required to compute f
is

O(2k + 2n−k) + 2kW + 2n/s+ 2n−k +W2k+1/s+ 2W. (4)

Choosing k = d3 log ne and s = dn− 5 log ne yields a circuit for f of size 2n

n (1 +O( logn
n )); here we

use the obvious upper bound W = 2s.

A.2 Circuit complexity of biased functions: Proof of Theorem A.1

Using the same (k, s)-representation as above, Yablonski [Yab59b, Yab59a] observed that it is
possible to construct a circuit of size σ 2n

n (1+O( logn
n )) for a Boolean function f(x1, . . . , xn), provided

that W ≤ 2σs for some 0 < σ ≤ 1 that is independent of the value of s. In this case, choosing
k = d3 log ne and s = d(n− 5 log n)/σe will yield a circuit of the required size. This is because all
the terms in Eq. (4) but 2n/s will still be o(2n/n), whereas the dominant term 2n/s will now be
about σ · (2n/n).

Proof of Theorem A.1. In our case, we have a random n-variate boolean function f where each bit
of its truth table is 1 with probability 0 < α < 1/2. This means that, for every fixed block Ai
of rows in the (k, s)-representation of f , a fixed s-bit column of that block is expected to have αs
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ones. By Chernoff’s bound, the probability (over random functions f) that this s-bit column has
more than 2αs ones in it is at most e−(1/3)αs. By the union bound, the probability that a fixed
column 1 ≤ j ≤ 2n−k has more that 2αs in any of p blocks A1, . . . , Ap is at most p · e−(1/3)αs. Call
such a column j bad.

We will have s ≥ n − 5 log n ≥ 0.9 · n, and so the probability that a given column j in the
(k, s)-representation is bad is at most p · 2−0.3αn, which is at most 2−0.29αn for k = d3 log ne.

Hence, the expected number of bad columns in the (k, s)-representation of a random α-biased
function f is at most M = 2n−k−0.29αn ≤ 2n(1−0.29α). By Markov’s inequality, the probability
that the actual number of bad columns is greater than n ·M is at most 1/n. That is, for all but
o(1) fraction of random α-biased n-variate functions f , their (k, s)-representation will have at most
nM ≤ 2n(1−0.28α) bad columns.

For an α-biased function f with few bad columns, define the function f ′ whose (k, s)-
representation is the same as that of f except all the bad columns are replaced by zeros. Clearly,
f ′ is such that, for every block Ai of its (k, s)-representation, each s-bit column in that block has
at most 2αs ones. It follows that

W ≤
2αs∑
i=0

(
s

i

)
≤ 2H(2α)·s,

where H is the binary entropy function. Let σ = H(2α). Then, as noted earlier, the function f ′

has a circuit of size at most

σ · 2n

n
(1 + o(1)).

Finally, to compute f , we use this circuit for f ′, and encode the inputs of f corresponding to the
bad columns where we need to flip the value of f ′. The number of such hard-wired inputs is at
most

2n(1−0.28α) · 2k ≤ 2n(1−0.27α).

Overall, we need to hard-wire

2n(1−0.27α) · n ≤ 2n(1−0.26α) ≤ o(2n/n)

bits, since α > 0 is some constant. Thus a circuit for f is of size at most

σ · 2n

n
(1 + o(1)),

as required.

A.3 Formula complexity of biased functions

Here we prove the following.

Theorem A.2. Let 0 < α < 1/2 be any constant. For all but o(1) fraction of random α-biased
n-variate boolean functions f , the formula size of f is at most

H(2α) · (2 + o(1)) · 2n

log n
,

where H is the binary entropy function.
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Proof. The same (k, s)-representation of a given n-variate boolean function f was used by Lupanov
to show that f has formula size at most (2+o(1)) · (2n/ log n); see, e.g., [Weg87, Theorem 3.2 (page
95)]. The actual formula size is at most

2pW + pWks+ pW (n− k) log2(n− k) + (2 + o(1)) · p2n−k(n− k) · (log−1(n− k)). (5)

The desired formula size is obtained by choosing k = d2 log ne and s = dn− 3 log ne.
Note that all terms in Eq. (5) except the last one are o(2n/ log n). The last, dominant term is

(2 + o(1)) · 2n

log(n− k)
· n− k

s
,

where we used p = 2k/s. If W ≤ 2σs, for some constant σ > 0 (independent of s), then we can set
s = (dn− 3 log ne)/σ, and get the formula size σ · (2 + o(1)) · 2n

logn .
The rest of the argument is as in the proof of Theorem A.1.
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