
A better-than-3n lower bound for the circuit complexity of an

explicit function

Magnus Gausdal Find1, Alexander Golovnev2,3, Edward A. Hirsch3, and Alexander S.
Kulikov3

1National Institute of Standards and Technology
2New York University

3Steklov Institute of Mathematics at St. Petersburg, Russian Academy of Sciences

Abstract

We consider Boolean circuits over the full binary basis. We prove a (3 + 1
86)n− o(n) lower

bound on the size of such a circuit for an explicitly defined predicate, namely an affine disperser
for sublinear dimension. This improves the 3n− o(n) bound of Norbert Blum (1984). The proof
is based on the gate elimination technique extended with the following three ideas. We generalize
the computational model by allowing circuits to contain cycles, this in turn allows us to perform
affine substitutions. We use a carefully chosen circuit complexity measure to track the progress
of the gate elimination process. Finally, we use quadratic substitutions that may be viewed as
delayed affine substitutions.

1 Introduction

In this paper we consider Boolean circuits over the full binary basis, that is, directed acyclic graphs
where each internal node computes a binary Boolean operation {0, 1} × {0, 1} → {0, 1}, inputs
are fed into nodes of indegree zero, and one node (or the negation of a node) is designated as the
output. The size of a circuit is the number of its internal nodes. A simple counting argument
[Sha49] shows that most Boolean functions require circuits of exponential size. However, showing
superpolynomial lower bounds for explicitly defined functions (for example, for functions from
NP) remains a hopelessly difficult task. (In particular, such lower bounds would imply P 6= NP.)
Moreover, even superlinear bounds are unknown for functions in ENP. Superpolynomial bounds are
known for MAEXP (exponential-time Merlin-Arthur games) [BFT98], and arbitrary polynomial
lower bounds are known for S2 (the symmetric second level of the polynomial hierarchy) which is
the smallest known class both containing NP and to which PH collapses by a Karp-Lipton-style
theorem [Cai01].

People started to tackle the problem in the 60s. Kloss and Malyshev [KM65] proved a 2n−O(1)
lower bound for the function

⊕
1≤i<j≤n xixj . Schnorr [Sch74] proved a 2n−O(1) lower bound for

functions that for any pair of variables x, y, have at least three different subfunctions among the four
functions obtained after substituting constants to x and y. Stockmeyer [Sto77] proved a 2.5n−O(1)
bound for certain symmetric functions. Paul [Pau77] proved a 2n− o(n) lower bound for the storage
access function and a 2.5n − o(n) lower bound for a function combining several storage access
functions using simple operations. Eventually, Blum [Blu84] extended Paul’s argument and proved
a 3n− o(n) bound. Blum’s bound remained unbeaten for more than thirty years. By reviewing the
proof, one notes that it cannot be extended to get a stronger than 3n lower bound without using
different properties of functions.

Recently, Demenkov and Kulikov [DK11] presented a much simpler proof of a 3n− o(n) lower
bound for functions with an entirely different property: affine dispersers. This property allows to
make affine substitutions until the disperser’s dimension is reached. As was later noted by Vadhan
and Williams [VW13], the way Demenkov and Kulikov use this property cannot give stronger than
3n bounds as it is tight for the inner product function (which is known to be an affine disperser for
dimension n/2 + 1). Hence, mysteriously, two different proofs using two different properties are
both stuck on exactly the same lower bound 3n− o(n) which was first proved more than 30 years
ago. Is this lack of progress grounded in combinatorial properties of circuits and this line of research
faces an insurmountable obstacle? Or can refinements on known techniques go above 3n? In this
paper we show that the latter is the case. We eventually improve the bound for affine dispersers to
(3 + 1

86)n− o(n), which is stronger than Blum’s bound.

Other models. The exact complexity of computational problems is different in different models
of computation: for example, switching from multitape to single-tape Turing machines squares the
time complexity; random access machines are even more efficient. For example, the quadratic lower
bound for recognizing palindromes by a single-tape Turing machine [HU69] is worthless for stronger
computational models. Boolean circuits over the full binary basis make a very robust computational
model. Using a different constant-arity basis only changes the constants in the complexity. A fixed
set of gates of arbitrary arity (for example, ANDs, ORs and XORs) still preserves the complexity in
terms of the number of wires. After all, finding a function hard for Boolean circuits can be viewed as
a combinatorial problem, in a contrast to lower bounds for uniform models. Therefore, breaking the
linear barrier for Boolean circuits can be viewed as an important milestone on the way to stronger
complexity lower bounds.

In this paper we consider single-output circuits (that is, circuits computing predicates). It would

1

be natural if allowing many outputs would lead us to non-linear bounds. However, the only tool we
have to transfer bounds from one output to several outputs is Lamagna and Savage [LS73] argument
showing that in order to compute simultaneously m different functions requiring c gates each, one
needs at least m+ c− 1 gates. That is, we do not have superlinear bounds for multioutput functions
either.

Stronger than 3n lower bounds are known for various restricted bases. One of the most popular
such bases, U2, consists of all binary Boolean functions except for parity (xor) and its negation
(equality), Schnorr [Sch76] proved that the circuit complexity of the parity function is 3n − 3.
Zwick [Zwi91] gave a 4n − O(1) lower bound for certain symmetric functions, Lachish and Raz
[LR01] showed a 4.5n− o(n) lower bound for an (n− o(n))-mixed function (a function all of whose
subfunctions of any n− o(n) variables are different). Iwama and Morizumi [IM02] improved this
bound to 5n− o(n). Demenkov et al. [DKMM15] gave a simpler proof of a 5n− o(n) lower bound
for a function with o(n) outputs as well as presented a 7n− o(n) lower bound for a function with n
outputs. It is interesting to note that the progress on U2 circuit lower bounds is also stuck on the
5n− o(n) lower bound: Amano and Tarui [AT11] presented an (n− o(n))-mixed function whose
circuit complexity over U2 is 5n+ o(n).

It was recently showed that depth 2 circuits with unbounded fanin ∧, ⊕-gates cannot compute
affine dispersers with good parameters [CT15].

While we do not have nonlinear bounds for constant-arity Boolean circuits, exponential bounds
are known for weaker models: one thread was initiated by Razborov [Raz85] for monotone circuits,
another one was started by Yao and H̊astad for constant-depth circuits without XORs [Yao85, H̊as86].
Shoup and Smolensky [SS91] proved a superlinear lower bound Ω(n log n/ log log n) for linear circuits
of polylogarithmic depth over infinite fields. Also, superlinear bounds for formulas are known for
half a century. For de Morgan formulas (i.e., formulas over AND, OR, NOT) Subbotovskaya
[Sub61] proved an Ω(n1.5) lower bound for the parity function using the random restrictions method.
Khrapchenko [Khr71] showed an Ω(n2) lower bound for parity. Applying Subbotovskaya’s random
restrictions method to the universal function by Nechiporuk [Nec66], Andreev [And87] proved an
Ω(n2.5−o(1)) lower bound. By analyzing how de Morgan formulas shrink under random restrictions,
Andreev’s lower bound was improved to Ω(n2.55−o(1)) by Impagliazzo and Nisan [IN93], then to
Ω(n2.63−o(1)) by Paterson and Zwick [PZ93], and eventually to Ω(n3−o(1)) by H̊astad [H̊as98] and
Tal [Tal14]. For formulas over the full binary basis, Nechiporuk [Nec66] proved an Ω(n2−o(1)) lower
bound for the universal function and for the element distinctness function. These bounds, however,
do not translate to superlinear lower bounds for general constant-arity Boolean circuits.

Connections to CircuitSAT algorithms. A recent promising direction initiated by Williams
[Wil13] connects the complexity of circuits to the complexity of algorithms for CircuitSAT (this is
the problem of checking whether a given circuit has a satisfying assignment, that is, a substitution of
inputs by constants that forces the circuit to output one). Namely, the existence of better-than-2n

algorithms for CircuitSAT for a particular circuit model implies exponential lower bounds for these
circuits for functions in large classes like NEXP. This way unconditional exponential lower bounds
have been proved for ACC0 circuits (constant-depth circuits with unbounded-arity OR, AND, NOT,
and arbitrary modular gates) [Wil14]. Ben-Sasson and Viola [BV14] have demonstrated that in
order to prove a specific linear lower bound for a function in ENP it suffices to lower the base of the
exponent in the 3-SAT complexity down to an appropriate constant.

It should be noted, however, that currently available algorithms for the satisfiability problem for
general circuit classes are not sufficient for proving new lower bounds. Current techniques require
upper bounds of the form O(2n/na) for circuits with n inputs and size nk, while for most classes

2

only cg-time algorithms are available, where g is the number of the gates and c > 1 is a constant.
On the other hand, the techniques used in the cg-time algorithms for CircuitSAT are somewhat

similar to the techniques used for proving linear lower bounds for (general) Boolean circuits over the
full binary basis. In particular, an O(20.4058g)-time algorithm by Nurk [Nur09] (and subsequently
an O(20.389667g)-time algorithm by Savinov [Sav14]) use reconstruction of the linear part of a circuit
similar to the one suggested by Paul [Pau77]. These algorithms and proofs use similar tricks in order
to simplify circuits; however, at present no rigorous statement is known that would connect these two
complexities. The only cases where certain types of algorithms for general complexity classes yield
linear lower bounds for them are average-case results for formulas [San10, ST13, KRT13, CKK+15]
and circuits [CK15], which are somewhat weaker than the current worst-case bounds.

Our methods. Almost all previous lower bounds have been proved using a simple gate elimination
technique: one gradually simplifies the function (for example, by substituting variables one by one)
showing that every simplification step eliminates a certain number of gates. A crucial idea [Sch74] is
to keep the function in the same class. Following [DK11], we prove lower bounds for affine dispersers,
that is, functions that are non-constant on affine subspaces of certain dimensions: Ben-Sasson and
Kopparty [BK12] gave an explicit construction of affine dispersers for sublinear dimensions.

Feeding an appropriate constant to a non-linear gate (for example, AND) makes this gate
constant and therefore eliminates subsequent gates, which helps to eliminate more gates than in the
case of a linear gate (for example, XOR). On the other hand, linear gates, when stacked together,
sometimes allow to reorganize the circuit. Then affine restrictions can kill such gates while keeping
the properties of an affine disperser. Such linear reconstructions were used for proving circuit lower
bounds by Paul [Pau77], Stockmeyer [Sto77], and Blum [Blu84]. Seto and Tamaki [ST13] used it to
prove upper bounds for satisfiability of formulas over the full binary basis. Demenkov and Kulikov
[DK11] used affine substitutions to prove a circuit lower bound for affine dispersers.

Thus, it is natural to consider a circuit as composed of linear circuits connected by non-linear
gates. In our case analysis it is important that we make affine substitutions but not restrictions.
That is, instead of just saying that x1 ⊕ x2 ⊕ x3 ⊕ x9 = 0 and removing all gates that become
constant, we make sure to replace all occurrences of x1 by x2 ⊕ x3 ⊕ x9. Since a gate computing
such a sum might be unavailable and we do not want to increase the number of gates, we “rewire”
some parts of the circuit, which, however, may potentially introduce cycles. This leads us to the first
ingredient of our proof: cyclic circuits. That is, the linear components of our “circuits” may now
have directed cycles; however, we require that the values computed in the gates are still uniquely
determined (which is actually a requirement on the rank of the corresponding linear system). Cyclic
circuits were studied, e.g., by Rivest [Riv77], Dymond and Cook [DC89], Nickelsen, Tantau, and
Weizsäcker [NTW04], Riedel and Bruck [RB12] (the last reference also contains an overview of
previous work on cyclic circuits).

Thus we are able to make affine substitutions. We try to make such a substitution in order to
make the topmost (i.e., closest to the inputs) non-linear gate constant. This, however, does not seem
to be enough. The second ingredient in our proof is a complexity measure that manages difficult
situations (bottlenecks) by allowing to perform an amortized analysis: we count not just the number
of gates, we compute a linear combination of the number of gates and the number of bottlenecks.
Such measures were previously considered by several authors. For example, Zwick [Zwi91] counted
the number of (internal) gates minus the number of inputs of outdegree 1. The same measure
was later used by Lachish and Raz [LR01] and by Iwama and Morizumi [IM02]. Kojevnikov and
Kulikov [KK10] used a measure assigning different weights to linear and non-linear gates to show
that Schnorr’s 2n−O(1) lower bound [Sch76] can be strengthened to 7n/3−O(1). Carefully chosen

3

complexity measures are also used to estimate the progress of splitting algorithms for NP-hard
problems [Kul99, KK06, FGK09].

Our main bottleneck (called “troubled gate”) is as follows:

x y

∧G

(All gates have outdegrees exactly as shown on the picture, i.e., two inputs of degree 2 feed a gate
of outdegree 1 that computes (x⊕ a)(y ⊕ b)⊕ c where a, b, c ∈ {0, 1} are constants.)

Sometimes in order to fight a troubled gate, we have to make a quadratic substitution, which
is the third ingredient of our proof. This happens if the gate below G is a linear gate fed by a
variable z; in the simplest case a substitution z = xy kills G, the linear gate, and the gate below
(actually, we show it kills much more). However, quadratic substitutions may make affine dispersers
constant, so we consider a special type of quadratic substitutions. Namely, we consider quadratic
substitutions as a form of delayed affine substitutions (in the example above, if we promise to
substitute later a constant either to x or to y, the substitution can be considered affine). In order to
maintain this, instead of affine subspaces (where affine dispersers are non-constant by definition) we
consider so-called read-once depth-2 quadratic sources (essentially, this means that all variables in
the right-hand sides of the quadratic substitutions that we make are pairwise distinct free variables).
We show that an affine disperser for a sublinear dimension remains non-constant for read-once
depth-2 quadratic sources of a sublinear dimension.

Open questions and further applications of the methods. A natural further direction is
to apply the developed techniques (quadratic substitutions, cyclic circuits, and combined complexity
measures) to get new complexity lower bounds and satisfiability upper bounds for other circuit
models.

An affine disperser for dimension d may be viewed as a function that is not constant on any
affine subspace of size at least 2d. A natural extension is a function that is not constant on
similarly sized varieties defined by quadratic polynomials. Golovnev and Kulikov [GK16] presented
a short proof that such “quadratic dispersers” with appropriate parameters must have circuit size
at least 3.1n. However, explicit constructions of such dispersers are currently unknown. There are
known constructions of dispersers for algebraic varieties over large finite fields [Dvi12], and known
constructions of such dispersers over F2 [CT15, Sha11] but with weaker parameters than needed for
the lower bound to work.

Using quadratic substitutions and combined complexity measures, Golovnev et al. [GKST16]
recently improved known upper bounds for satisfiability algorithms for general circuits as well as
average case circuit size lower bounds.

It would be useful to understand the limitations of the method used in this paper. Do there
exist affine dispersers for sublinear dimension computable by circuits of linear size? More generally,
is there an inherent limitation of the gate elimination technique, that is, can it give a non-linear or
arbitrary linear lower bound in principle?

2 Definitions

Gates and notation. A circuit is an acyclic directed graph in which incoming edges are numbered
for every node. The nodes are called gates. A gate may have either indegree zero (in which case it

4

x yz t

∧A

⊕D

∨B

≡C

∧ E

B = (z ∨ x)
A = (x ∧ y)
D = (B ⊕A)
C = (A ≡ t)
E = (D ∧ C)

Figure 1: An example of a circuit and the program it computes.

is called an input gate, or a variable) or indegree two (in which case it is called an internal gate).
Every internal gate is labelled by a Boolean function g : {0, 1} × {0, 1} → {0, 1}, and the set of all
the sixteen such functions is denoted by B2. We call these binary functions operations in order to
distinguish them from functions of n variables computed in the gates. The size of a circuit is the
number of internal gates.

We say that an operation is of and-type if it computes g(x, y) = (c1 ⊕ x)(c2 ⊕ y)⊕ c3 for some
constants c1, c2, c3 ∈ {0, 1}, and of xor-type if it computes g(x, y) = x⊕ y ⊕ c1 for some constant
c1 ∈ {0, 1}. Similarly, we call gates and-type and xor-type. If a gate computes an operation
depending on precisely one of its inputs, we call it passing.

If an (internal) gate computes a constant operation, we call it trivial (note that it still has
two incoming edges). If a substitution forces some gate G to compute a constant, we say that it
trivializes G. (For example, for a gate computing the operation g(x, y) = x ∧ y, the substitution
x = 0 trivializes it.)

We denote by out(G) the outdegree of the gate G. If out(G) = k, we call G a k-gate. If
out(G) ≥ k, we call it a k+-gate. We adopt the same terminology for variables (so we have
0-variables, 1-variables, 2+-variables, etc.).

One gate of outdegree zero is designated as the output.
A toy example of a circuit is shown in Figure 1. For input gates, the corresponding variables are

shown inside. For an internal gate, we show its operation inside and its label near the gate. As
figure shows, a circuit corresponds to a simple program for computing a Boolean function: each
instruction of the program is a binary Boolean operation whose inputs are input variables or the
results of the previous instructions.

Affine dispersers. An affine disperser for dimension d(n) is a family of functions fn : Fn2 → F2

such that for all sufficiently large n, fn is non-constant on any affine subspace of dimension at
least d(n). Explicit constructions of affine dispersers have drawn a lot of attention recently. First,
polynomial-time computable affine dispersers for any linear dimension were constructed [BKS+10,
Bou07], and then it was shown that there are polynomial-time computable affine dispersers for
sublinear dimensions d(n) = o(n) [BK12, Yeh11, Li11, Sha11, Li15].

2.1 Generalizations of circuits

Cyclic circuits. In this paper we apply a sequence of transformations on circuits. To accomodate
this we use a generalizations of circuits. These generalized circuits may contain cycles of a certain
kind; however we only introduce cycles in such a way that the values computed in the gates are
internally consistent.

A cyclic circuit is a directed (not necessarily acyclic) graph where all vertices have indegree
either 0 or 2. We adopt the same terminology for its nodes (input and internal gates) and its size as

5

for ordinary circuits. We restrict our attention to cyclic xor-circuits, where all gates compute affine
operations. While the most interesting internal gates compute either ⊕ or ≡, for technical reasons
we also allow passing gates and trivial gates. We will be interested in multioutput cyclic circuits, so,
in contrast to our definition of ordinary circuits, several gates may be designated as outputs, and
they may have nonzero outdegree.

A circuit, and even a cyclic circuit, naturally corresponds to a system of equations over F2.
Variables of this system correspond to the values computed in the internal gates. The operation
of an internal gate imposes an equation defining the computed value. Whenever an input gate is
encountered, it is treated like a constant (because we will be interested in solving this system when
we are given specific input values). Thus we formally have a separate system for every assignment
to the input gates, but all these systems share the same matrix. For a gate G fed by gates F and
H and computing some operation �, we write the equation G ⊕ (F � H) = 0. A more specific
clarifying example would be a gate G computing F ⊕ x⊕ 1, where x is an input gate; then the line
in the system would be G⊕ F = x⊕ 1, where G and F contribute two 1’s to the matrix, and x⊕ 1
contributes to the constant vector.

For a cyclic xor-circuit, this is a linear system with a square matrix. We call a cyclic xor-circuit
fair if this matrix has full rank. It follows that for every assignment of the inputs, there exist unique
values for the gates such that these values are consistent with the circuit (that is, for each gate its
value is correctly computed from the values in its inputs). Thus, similarly to an ordinary circuit,
every gate in a fair circuit computes a function of the values fed into its input gates (clearly, it is an
affine function). A simple example of a fair cyclic xor-circuit is shown in Figure 2. Note that if we
additionally impose the requirement that the graph is acyclic, we arrive at ordinary linear circuits
(that is, circuits consisting of xor-type gates, passing gates, and constant gates).

Relationship between cyclic and acyclic xor-circuits. It is not difficult to show that for
multiple outputs, fair cyclic xor-circuits form a stronger model than acyclic xor-circuits. For example,
the 9 functions computed simultaneously by the cyclic xor-circuit shown in Figure 2 cannot be
computed by an acyclic xor-circuit with 9 gates. To see this, assume for the sake of contradiction,
that an acyclic xor-circuit with 9 gates computes the same functions. Since the circuit has 9 gates
all gates must compute outputs. Consider a topologically minimal gate G. Such a gate exists since
the circuit is acyclic. Since G is topologically minimal it computes the sum of two input gates,
therefore it cannot compute an output.

On the other hand, a minimal xor-circuit of k variables computing a single output has exactly
k − 1 internal gates and is acyclic.

Semicircuits. We introduce the following notion, called semicircuits, a generalization of both
Boolean circuits and cyclic xor-circuits.

A semicircuit is a composition of a cyclic xor-circuit and an (ordinary) circuit. Namely, its nodes
can be split into two sets, X and C. The nodes in the set X form a cyclic xor-circuit. The nodes in
the set C form an ordinary circuit (if wires going from X to C are replaced by variables). There are
no wires going back from C to X. A semicircuit is called fair if X is fair. In what follows we
abuse the notation by using the word “circuit” to mean a fair semicircuit.

6

⊕G5

⊕G6

⊕G7

⊕G2

⊕G3

⊕G4

⊕
G1

⊕
G8

⊕G9

x7

x8

x1

x4

x3

x2

x5

x6

G1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
G2 = x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
G3 = x1 ⊕ x2 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
G4 = x1 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8
G5 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x8
G6 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6
G7 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6
G8 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x8
G9 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8



1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 1 1


×



G1

G2

G3

G4

G5

G6

G7

G8

G9


=



x5
x4
x3
x2
x7
x8
x1
0
x6



G1 = G9 ⊕ x5
G2 = G1 ⊕ x4
G3 = G2 ⊕ x3
G4 = G3 ⊕ x2
G5 = G1 ⊕ x7
G6 = G5 ⊕ x8
G7 = G6 ⊕ x1
G8 = G4 ⊕G7

G9 = G8 ⊕ x6

Figure 2: A simple example of a cyclic xor-circuit. In this case all the gates are labeled with ⊕.
The affine functions computed by the gates are shown to the right of the circuit. The bottom row
shows the program computed by the circuit as well as the corresponding linear system.

7

3 Lower bound

3.1 Overview

Section 3 is devoted to the proof of the main theorem.
The proof goes by induction. We start with an affine disperser and a circuit computing

it on {0, 1}n. Then we gradually shrink the space where it is computed by adding equations
(“substitutions”) for variables. This allows us to simplify the circuit by reducing the number of
gates (and other parameters counted in the complexity measure) and eliminating the variable we
have just substituted.

In Section 3.2 we show how to make substitutions in fair semicircuits, and how to normalize
them afterwards. We introduce five normalization rules covering various degenerate cases that may
occur in a circuit after applying a substitution to it: e.g., a gate of outdegree 0, a gate computing a
constant function, a gate whose value depends on one of its inputs only. For each such case, we
show how to simplify a circuit.

We then show how to make affine substitutions. This is the step that might potentially introduce
cycles in the affine part of a circuit and that requires to work with a generalized notion of circuits.

Also, we define a so-called troubled gate. Informally speaking, this is a special bottleneck
configuration in a circuit that does not allow to eliminate more than three gates easily. To overcome
this difficulty, we use a circuit complexity measure that depends on the number of troubled gates.
This, in turn, requires us to analyze carefully how many new troubled gates can be introduced
by applying a normalization rule. At the same time, we show that a circuit computing an affine
disperser cannot have too many troubled gates (otherwise one could find an affine subspace of not
too large dimension that makes the circuit constant). This implies that the bottleneck case cannot
appear too often during the gate elimination process.

In Section 3.3 we formally define a source arising from constant, affine, and quadratic substitutions.
We apply quadratic substitutions very carefully. In particular, we maintain the following invariant:
the variables from the right-hand side of quadratic substitutions are pairwise different and do not
appear in the left hand side of affine substitutions. This invariant guarantees that a disperser for
affine sources is also a disperser for our generalized sources (with parameters that are only slightly
worse).

In Section 3.4 we define the circuit complexity measure and formulate the main result: we can
always reduce the measure by an appropriate amount by shrinking the space; the lower bound
follows. The measure is defined as a linear combination of four parameters of a circuit: the number
of gates, the number of troubled gates, the number of quadratic substitutions, and the number of
inputs. The optimal values for coefficients in this linear combination come from solving a simple
linear program.

Finally, Section 3.5 employs all developed techniques in order to prove the main lower bound of
the paper. Before going into details, in Section 3.5.1 we provide a two pages long outline of the case
distinction argument that covers all essential cases. A complete proof is given in Section 3.5.2.

3.2 Cyclic circuit transformations

3.2.1 Basic substitutions

In this section we consider several types of substitutions. It is straightforward how to substitute a
constant to an input:

Proposition 1. Let C be a circuit with input gates x1, . . . , xn, and let c ∈ {0, 1} be a constant. For
every gate G fed by x1 replace the operation g(x1, t) computed by G with the operation g′(x1, t) = g(c, t)

8

(thus the result becomes independent of x1). This transforms C into another circuit C ′ (in particular,
it is still a fair semicircuit) such that it has the same number of gates, the same topology, and for
every gate H that computes a function h(x1, . . . , xn) in C, the corresponding gate in the new circuit
C ′ computes the function h(c, x2, . . . , xn).

We call this transformation a substitution by a constant.
A more complicated type of a substitution is when we replace an input x with a function

computed in a different gate G. In this case in each gate fed by x, we replace wires going from x by
wires going from G.

We call this transformation a substitution by a function.

Proposition 2. Let C be a circuit with input gates x1, . . . , xn, and let g(x2, . . . , xn) be a function
computed in a gate G. Consider the construction C ′ obtained by substituting a function g to x1 (it has
the same number of gates as C). Then if G is not reachable from x1 by a directed path in C, then C ′

is a fair semicircuit, and for every gate H that computes a function h(x1, . . . , xn) in C, except for x1,
the corresponding gate in the new circuit C ′ computes the function h(g(x2, . . . , xn), x2, . . . , xn).

Proof. Note that we require that G is not reachable from x1 (thus we do not introduce new cycles),
and also that g does not depend on x1. Functions computed in the gates are the solution of
the system corresponding to the circuit (see Section 2.1). The transformation simply replaces
every equation of the form H = F � x1 with the equation H = F �G (and equation of the form
H ′ = x1 � x1 with the equation H ′ = G�G).

In order to prove that C ′ is a fair semicircuit, we show that for each assignment to the inputs,
there is a unique assignment to the gates of C ′ that is consistent with the inputs. Consider
specific values for x2, . . . , xn. Assume that the solution for the old system does not satisfy the new
equation. Then take x1 = g(x2, . . . , xn), it violates the corresponding equation in the old system, a
contradiction. Vice versa, consider a different solution for the new system. It must satisfy the old
system (where x1 = g(x2, . . . , xn)), but the old system has a unique solution.

In what follows, however, we will also use substitutions that do not satisfy the hypothesis of this
proposition: substitutions that create cycles. We defer this construction to Section 3.2.3.

3.2.2 Normalization and troubled gates

In order to work with a circuit, we are going to assume that it is “normalized”, that is, it does not
contain obvious inefficiencies (such as trivial gates, etc.), in particular, those created by substitutions.
We describe certain normalization rules below; however, while normalizing we need to make sure
the circuit remains within certain limits: in particular, it must remain fair and compute the same
function. We need to check also that we do not “spoil” a circuit by introducing “bottleneck” cases.
Namely, we are going to prove an upper bound on the number of newly introduced unwanted
fragments called “troubled” gates.

We say that an internal gate G is troubled if it satisfies the following three criteria:

• G is an and-type gate of outdegree 1,

• the gates feeding G are input gates,

• both input gates feeding G have outdegree 2.

x y

∧G

9

From now on, we denote all and-type gates by ∧, and all xor-type gates by ⊕.
We always make substitutions consciously and thus can count the number of troubled gates

that can possible emerge. However, what if a gate is killed because of simplifications? We limit the
process of removing gates to normalization rules, and make sure that we never get more than four
new troubled gates per killed gate.

We say that a circuit is normalized if none of the following rules is applicable to it. Each rule
eliminates a gate G whose inputs are gates I1 and I2. (Note that I1 and I2 can be inputs or internal
nodes, and, in rare cases, they can coincide with G itself.)

Rule 1: If G has no outgoing edges and is not marked as an output, then remove it.

I1 I2
G

I1 I2

Note also that it could not happen that the only outgoing edge of G feeds itself, because this would
make a trivial equation and violate the circuit fairness.

Rule 2: If G is trivial, i.e., it computes a constant function c of the circuit inputs (not necessarily
a constant operation on the two inputs of G), remove G and “embed” this constant to the next gates.
That is, for every gate H fed by G, replace the operation h(g, t) computed in this gate (where g is
the input from G and t is the other input) by the operation h′(g, t) = h(c, t). (Clearly, h′ depends
on at most one argument, which is not optimal, and in this case after removing G one typically
applies Rule 3 or Rule 2 to its successors.)

I1 I2
G

I1 I2

Rule 3: If G is passing, i.e., it computes an operation depending only on one of its inputs, remove
G by reattaching its outgoing wires to that input. This may also require changing the operations
computed at its successors (the corresponding input may be negated; note that an and-type gate
(xor-type gate) remains an and-type gate (xor-type gate)).

If G feeds itself and depends on another input, then the self-loop wire (which would now go
nowhere) is dropped. (Note that if G feeds itself it cannot depend on the self-loop input.)

If G has no outgoing edges it must be an output gate (otherwise it would be removed by Rule 1).
In this special case, we remove G and mark the corresponding input of G (or its negation) as the
output gate.

I1 I2
G

I1 I2

Rule 4: If G is a 1-gate that feeds a single gate Q, Q is distinct from G itself, and Q is also fed by
one of G’s inputs, then replace in Q the incoming wire going from G by a wire going from the other
input of G (this might also require changing the operation at Q); then remove G. We call such a
gate G useless.

I1 I2
G

Q

I1 I2

Q

10

Rule 5: If the inputs of G coincide (I1 and I2 refer to the same node) then we replace the binary
operation g(x, y) computed in G with the operation g′(x, y) = g(x, x). Then perform the same
operation on G as described in Rule 3 or 2.

Proposition 3. Each of the Rules 1–5 removes one internal gate, introduces at most four new
troubled gates. An input gate that was not connected by a directed path to the output gate cannot
be connected by a new directed path1. None of the rules change the functions of n input variables
computed in the gates that are not removed. A fair semicircuit remains a fair semicircuit.

Proof. Fairness. The circuit remains fair since no rule changes the set of solutions of the system.
New troubled gates. For all the rules, the only gates that may become troubled are I1, I2 (if they

are and-type gates), and the gates they feed after the transformation (if I1 or I2 is a variable). Each
of I1, I2 may create at most two new troubled gates. Hence each rule, when applied, introduces at
most four new troubled gates.

3.2.3 Affine substitutions

In this section, we show how to make substitutions that do create cycles. This will be needed in order
to make affine substitutions. Namely, we take a gate computing an affine function x1 ⊕

⊕
i∈I xi ⊕ c

(where c ∈ {0, 1} is a constant) and “rewire” a circuit so that this gate is replaced by a trivial gate
computing a constant b ∈ {0, 1}, while x1 is replaced by an internal gate. The resulting circuit over
x2, . . . , xn may be viewed as the initial circuit under the substitution x1 ←

⊕
i∈I xi ⊕ c⊕ b. The

“rewiring” is formally explained below; however, before that we need to prove a structural lemma
(which is trivial for acyclic circuits) that guarantees its success.

For an xor-circuit, we say that a gate G depends on a variable x if G computes an affine function
in which x is a term. Note that in a circuit without cycles this means that precisely one of the
inputs of G depends on x, and one could trace this dependency all the way to x, therefore there
always exists a path from x to G. In the following lemma we show that it is always possible to find
such a path in a fair cyclic circuit too. However, it may be possible that some nodes on this path
do not depend on x. Note that dependencies in cyclic circuits are sometimes counterintuitive. For
example, in Figure 2, gate G4 is fed by x2 but does not depend on it.

Lemma 1. Let C be a fair cyclic xor-circuit, and let the gate G depend on the variable x. Then
there is a path from x to G.

Proof. Let us substitute all variables in C except for x to 0. Since G depends on x, it can only
compute x or its negation.

Let R be the set of internal gates that are reachable from x, and U be the set of internal gates
that are not reachable from x. Let us enumerate the gates in such a way that gates from U have
smaller indices than gates from R. Then the circuit C corresponds to the system[

U 0
R1 R2

]
× G =

[
LU
LR

]
,

where G = (g1, . . . , g|C|)
T is a vector of unknowns (the gates’ values), U is the principal submatrix

corresponding to U (a square submatrix whose rows and columns correspond to the gates from U).
Note that

1This trivial observation will be formally needed when we later count the number of such gates.

11

• the upper right part of the matrix is 0, because there are no wires going from R to U , and
thus unknowns corresponding to gates from R do not appear in the equations corresponding
to gates from U ,

• LU is a vector of constants, it cannot contain x since U is not reachable from x,

• LR is a vector of affine functions of x, since all other inputs are substituted by zeros.

If U is singular, then the whole matrix is singular, which contradicts the fairness of C. Therefore,
U is nonsingular, i.e., the values G′ = (g1, . . . , g|U|)

T are uniquely determined by U × G′ = LU , and
they are constant (independent of x). This means that G cannot belong to U .

We now come to rewiring.

Lemma 2. Let C be a fair semicircuit with input gates x1, . . . , xn and internal gates G1, . . . , Gm.
Let G be a gate not reachable by a directed path from any and-type gate. Assume that G computes
the function x1 ⊕

⊕
i∈I xi ⊕ c, where I ⊆ {2, . . . , n}. Let b ∈ {0, 1} be a constant. Then one can

transform C into a new circuit C ′ with the following properties:

1. graph-theoretically, C ′ has the same gates as C, plus a new internal gate Z; some edges are
changed, in particular, x1 is disconnected from the circuit;

2. the operation in G is replaced by the constant operation b;

3. inC′(Z) = 2, outC′(G) = outC(G) + 1, outC′(x1) = 0. outC′(Z) = outC(x1)− 1.

4. The indegrees and outdegrees of all other gates are the same in C and C ′.

5. C ′ is fair.

6. all gates common for C ′ and C compute the same functions on the affine subspace defined by
x1 ⊕

⊕
i∈I xi ⊕ c⊕ b = 0, that is, if f(x1, . . . , xn) is the function computed by an internal gate

in C and f ′(x2, . . . , xn) is the function computed by its counterpart in C ′, then f(
⊕

i∈I xi ⊕
c⊕ b, x2, . . . , xn) = f ′(x2, . . . , xn). The gate Z computes the function

⊕
i∈I xi ⊕ c⊕ b (which

on the affine subspace equals x1).

Proof. Consider a path from x1 to G that is guaranteed to exist by Lemma 1. Denote the internal
gates on this path by G1, . . . , Gk = G. Denote by T1, . . . , Tk the other inputs of these gates. Note
that we assume that G1, . . . , Gk are pairwise different gates while some of the gates T1, . . . , Tk may
coincide with each other and with some of G1, . . . , Gk (it might even be the case that Ti = Gi).

The transformation is as shown in Figure 3. The gates A0, . . . , Ak are shown on the picture just
for convenience: any of x1, Z,G1, . . . , Gk may feed any number of gates, not just one Ai.

To show the fairness of C ′, assume the contrary, that is, the sum of a subset of rows of the new
matrix is zero. The row corresponding to Gk = b must belong to the sum (otherwise we would have
only rows of the matrix for C, plus an extra column). However, this would mean that if we sum up
the corresponding lines of the system (not just the matrix) for C, we get Gk = const⊕

⊕
j∈J xj where

J 63 1 (note that x1 was replaced by Z in the new system, and cancelled out by our assumption).
This contradicts the assumption of the Lemma that Gk computes the function x1 ⊕

⊕
i∈I xi ⊕ c.

Therefore, the matrix for C ′ has full rank.
The programs shown next to the circuits explain that for x1 =

⊕
i∈I xi ⊕ c ⊕ b, the gates

G1, . . . , Gk compute the same values in C ′ and C; the value of Z is also clearly correct.

12

A0
x1

⊕
G1A1 T1

⊕
G2A2 T2

...

⊕
Gk−1Ak−1 Tk−1

⊕
GkAk Tk

G1 = x1 ⊕ T1
G2 = G1 ⊕ T2

...
Gk = Gk−1 ⊕ Tk

A0
⊕
Z

⊕
G1A1 T1

⊕
G2A2 T2

...

⊕
Gk−1Ak−1 Tk−1

b
GkAk Tk

Z = G1 ⊕ T1
G1 = G2 ⊕ T2

...
Gk−1 = Gk ⊕ Tk

Gk = b

Figure 3: This figure illustrates the transformation from Lemma 2. We use ⊕ as a generic label for
xor-type gates. That is, in the picture, gates labelled ⊕ may compute the function ≡.

Corollary 1. This transformation does not introduce new troubled gates.

Proof. Indeed, the gates being fed by G1, . . . , Gk−1, Gk, Z are not fed by variables; these gates
themselves are not and-type gates; other gates do not change their degrees or types of input
gates.

After we apply the transformation, we apply Rule 2 to G. Since the only troubled gates
introduced by this rule are the inputs of the removed gate, no troubled gates are introduced (and
one gate, G itself, is eliminated, thus the combination of Lemma 2 and Rule 2 does not increase the
number of gates).

3.3 Read-once depth-2 quadratic sources

We generalize affine sources as follows.

Definition 1. Let the set of variables {x1, . . . , xn} be partitioned into three disjoint sets F,L,Q ⊆
{1, . . . , n} (for free, linear, and quadratic). Consider a system of equalities that contains

• for each variable xj with j ∈ Q, a quadratic equality of the form

xj = (xi ⊕ ci)(xk ⊕ ck)⊕ cj ,

where i, k ∈ F and ci, ck, cj are constants; the variables from the right-hand side of all the
quadratic substitutions are pairwise disjoint;

• for each variable xj with j ∈ L, an affine equality of the form

xj =
⊕

i∈Fj⊆F
xi ⊕

⊕
i∈Qj⊆Q

xi ⊕ cj

for a constant cj.

A subset R of {(x1, x2, . . . , xn) ∈ Fn2} that satisfies these equalities is called a read-once depth-2
quadratic source (or rdq-source) of dimension d = |F |.

13

x1 x2 x3 x4 x5 x6 x7 x8

∧x9 ∧ x10 ∧x11

⊕x12 ⊕x13 ⊕ x14

Figure 4: An example of an rdq-source. Note that a variable can be read just once by an and-type
gate while it can be read many times by xor-type gates.

An example of such a system is shown in Figure 4.
The variables from the right-hand side of quadratic substitutions are called protected. Other free

variables are called unprotected.
For this, we will gradually build a straight-line program (that is, a sequence of lines of the form

x = f(. . .), where f is a function depending on the program inputs (free variables) and the values
computed in the previous lines) that produces an rdq-source. We build it bottom-up. Namely,
we take an unprotected free variable xj and extend our current program with either a quadratic
substitution

xj = (xi ⊕ ci)(xk ⊕ ck)⊕ cj
depending on free unprotected variables xi, xk or a linear substitution

xj =
⊕
i∈J

xi ⊕ cj

depending on any variables. It is clear that such a program can be rewritten into a system satisfying
Definition 1. In general, we cannot use protected free variables without breaking the rdq-property.
However, there are two special cases where this is possible: (1) we can substitute a constant to a
protected variable (and update the quadratic line accordingly: for example, z = xy and x = 1 yield
z = y and x = 1); (2) we can substitute one protected variable for another variable (or its negation)
from the same quadratic equation (for example, z = xy and x = y yield z = y and x = y).

In what follows we abuse the notation by denoting by the same letter R the source, the straight-
line program defining it, and the mapping R : Fd2 → Fn2 computed by this program that takes the d
free variables and evaluates all other variables.

Definition 2. Let R ⊆ Fn2 be an rdq-source of dimension d, let the free variables be x1, x2, . . . , xd,
and let f : Fn2 → F2 be a function. Then f restricted to R, denoted f |R, is a function f |R : Fd2 → F2,
defined by f |R(x1, . . . , xd) = f(R(x1, . . . , xd)).

Note that affine sources are precisely rdq-sources with Q = ∅. We define dispersers for rdq-sources
similarly to dispersers for affine sources.

Definition 3. An rdq-disperser for dimension d(n) is a family of functions fn : Fn2 → F2 such that
for all sufficiently large n, for every rdq-source R of dimension at least d(n), fn|R is non-constant.

The following proposition shows that affine dispersers are also rdq-dispersers for related parame-
ters.

Proposition 4. Let R be an rdq-source of Fn2 of dimension d. Then R contains an affine subspace
of dimension at least d/2.

14

Proof. For each quadratic substitution xj = (xi⊕ci)(xk⊕ck)⊕cj , further restrict R by setting xi = 0.
This replaces a quadratic substitution by two affine substitutions xi = 0 and xj = ci(xk ⊕ ck)⊕ cj ;
the number of free variables is decreased by one. Also, since the free variables do not occur on
the left-hand side, the newly introduced affine substitution is consistent with the previous affine
substitutions.

Since the variables occurring on the right-hand side of our quadratic substitutions are disjoint
we have initially that 2|Q| ≤ |F | = d, so the number of newly introduced affine substitutions is at
most d/2.

Note that it is important in the proof that protected variables do not appear on the left-hand
sides. The proposition above is obviously false for quadratic varieties: no Boolean function can
be non-constant on all sets of common roots of n− o(n) quadratic polynomials. For example, the
system of n/2 quadratic equations x1x2 = x3x4 = . . . = xn−1xn = 1 defines a single point, so any
function is constant on this set.

Corollary 2. An affine disperser for dimension d is an rdq-disperser for dimension 2d. In particular,
an affine disperser for sublinear dimension is also an rdq-disperser for sublinear dimension.

3.4 Circuit complexity measure

For a circuit C and a straight-line program R defining an rdq-source (over the same set of variables),
we define the following circuit complexity measure:

µ(C,R) = g + αQ · q + αT · t+ αI · i ,

where g is the number of internal gates in C, q is the number of quadratic substitutions in R, t is
the number of troubled gates in C, and i is the number of influential input gates in C. We say that
an input is influential if it feeds at least one gate or is protected (recall that a variable is protected
if it occurs in the right-hand side of a quadratic substitution in R). The constants αQ, αT , αI > 0
will be chosen later.

Proposition 3 implies that when a gate is removed from a circuit by applying a normalization
rule the measure µ is reduced by at least β = 1− 4αT . The constant αT will be chosen to be very
close to 0 (certainly less than 1/4), so β > 0.

In order to estimate the initial value of our measure, we need the following lemma.

Lemma 3. Let C be a circuit computing an affine disperser f : Fn2 → F2 for dimension d, then the
number of troubled gates in C is less than n

2 + 5d
2 .

Proof. Let V be the set of the inputs, |V | = n. In what follows we let t denote the disjoint set
union. Let us call two inputs x and y neighbors if they feed the same troubled gate. Assume to the
contrary that t ≥ n

2 + 5d
2 . Let vi be the number of variables feeding exactly i troubled gates. Since

a variable feeding a troubled gate must have outdegree 2, vi = 0 for i > 2. By double counting the
number of wires from inputs to troubled gates, 2t = v1 + 2v2. Since v1 + v2 ≤ n,

n+ 5d ≤ 2t = v1 + 2v2 ≤ n+ v2.

Let T be the set of inputs that feed two troubled gates, |T | = v2 ≥ 5d. We now construct two
disjoint subsets X ⊂ T and Y ⊂ V such that

• |X| = d,

15

• there are |Y | consistent linear equations that make the circuit C independent of variables from
X t Y .

When the sets X and Y are constructed the theorem statement follows immediately. Indeed, we
first take |Y | equations that make C independent of X t Y , then we set all the remaining variables
V \ (X t Y) to arbitrary constants. After this, the circuit C evaluates to a constant (since it
does not depend on variables from X t Y and all other variables are set to constants). We have
|Y |+ |V \ (X t Y)| = |V \X| = n− d linear equations which contradicts the assumption that f is
an affine disperser for dimension d.

Now we turn to constructing X and Y . For this we will repeat the following routine d times.
First we pick any variable x ∈ T , it feeds two troubled gates, let y1 and y2 be neighbors of x (y1
may coincide with y2). We add x to X, also we add y1, y2 to Y . Note that it is possible to assign
constants to y1 and y2 to make C independent of x. (See the figure below. If y1 differs from y2,
then we substitute constants to them so that they eliminate troubled gates fed by x and leave C
independent of x. If y1 coincides with y2, then either x = c, or y1 = c, or y1 = x⊕ c eliminates both
troubled gates for some constant c; if we make an x = c substitution, then formally we have to
interchange x and y, that is, add y rather than x to X.) Each of y1, y2 has at most one neighbor
different from x. We remove x, y1, y2, neighbors of y1 and y2 (at most five vertices total) from the
set T , if they belong to it. Since at each step we remove at most five vertices from T , we can repeat
this routine d times. Since we remove the neighbors of y1 and y2 from T , we guarantee that in all
future steps when we pick an input, its neighbors do not belong to Y , so we can make arbitrary
substitutions to them and leave the system consistent.

y1 x y2

∧ ∧
y x

∧ ∧

We are now ready to formulate our main result.

Theorem 1. Let f : Fn2 → F2 be an rdq-disperser for dimension d and C be a fair semicircuit
computing f . Let αQ, αT , αI ≥ 0 be some constants, and αT ≤ 1/4. Then µ(C, ∅) ≥ δ(n − d − 2)
where

δ := αI + min
{αI

2
, 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β +

αQ
2

}
, (1)

and β = 1− 4αT .

We defer the proof of this theorem to the next section. This theorem, together with Corollary 2,
implies a lower bound on the circuit complexity of affine dispersers.

Corollary 3. Let δ, β, αQ, αT , αI be constants as above, then the circuit size of an affine disperser
for sublinear dimension is at least (

δ − αT
2
− αI

)
n− o(n) .

Proof. Note that q = 0, i ≤ n, t < n
2 + 5d

2 (see Lemma 3). Thus, the circuit size is

g = µ− αQ · q − αT · t− αI · i > δ(n− 2d− 2)− αT ·
(
n

2
+

5d

2

)
− αI · n

=
(
δ − αT

2
− αI

)
n−

(
2δ +

5αT
2

)
d− 2δ =

(
δ − αT

2
− αI

)
n− o(n) .

16

The maximal value of δ − αT
2 − αI satisfying the condition from Corollary 3 is given by the

following linear program: maximize δ − αT
2 − αI subject to

β + 4αT = 1

αT , αQ, αI , β ≥ 0

δ ≤ αI + min
{αI

2
, 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β +

αQ
2

}
.

The optimal values for this linear program are

αT =
1

43
,

αQ = 1 + 22αT =
65

43
,

αI = 6 + 2αT = 6 +
2

43
,

β = 1− 4αT =
39

43
,

δ = 9 + 3αT = 9 +
3

43
.

This gives the main result of the paper.

Main Theorem. The circuit size of an affine disperser for sublinear dimension is at least (3 +
1
86)n− o(n).

3.5 Gate elimination

In order to prove Theorem 1 we first show that it is always possible to make a substitution and
decrease the measure by δ.

Theorem 2. Let f : Fn2 → F2 be an rdq-disperser for dimension d, let R be an rdq-source of
dimension s ≥ d+ 2, and let C be an optimal (i.e., C with the smallest µ(C,R)) fair semicircuit
computing the function f |R. Then there exist an rdq-source R′ of dimension s′ < s and a fair
semicircuit C ′ computing the function f |R′ such that

µ(C ′, R′) ≤ µ(C,R)− δ(s− s′) .

Before we proceed to the proof, we show how to infer the main theorem from this claim:

Proof of Theorem 1. We prove that for optimal C computing f |R, µ(C,R) ≥ δ(s− d− 2). We do it
by induction on s, the dimension of R. Note that the statement is vacuously true for s ≤ d+ 2, since
µ is nonnegative. Now suppose the statement is true for all rdq-sources of dimension strictly less
than s for some s > d+ 2, and let R be an rdq-source of dimension s. Let C be a fair semicircuit
computing f |R. Let R′ be the rdq-source of dimension s′ guaranteed to exist by Theorem 2, and let
C ′ be a fair semicircuit computing f |R′ . We have that

µ(C,R) ≥ µ(C ′, R′) + δ(s− s′) ≥ δ(s− d− 2),

17

where the second inequality comes from the induction hypothesis.

3.5.1 Proof outline

The proof of Theorem 2 is based on a careful consideration of a number of cases. Before considering
all of them formally, we show a high-level picture of the case analysis.

We fix the values of constants αT , αQ, αI , β, δ to the optimal values: αT = 1
43 , αQ = 65

43 , αI =
6 2
43 , β = 39

43 , δ = 9 3
43 . Now it suffices to show that we can always make one substitution and

decrease the measure by at least δ = 9 3
43 . First we normalize the circuit. By Proposition 3, during

normalization if we eliminate a gate then we introduce at most four new troubled gates, this means
that we decrease the measure by at least 1− 4αT = 39

43 . Therefore, normalization never increases
the measure.

We always make constant, linear or simple quadratic substitution to a variable. Then we remove
the substituted variable from the circuit, so that for each assignment to the remaining variables the
function is defined. It is easy to make a constant substitution x = c for c ∈ {0, 1}. We propagate
the value c to the inputs fed by x and remove x from the circuit, since it does not feed any other
gates. An affine substitution x =

⊕
i∈I xi ⊕ c is harder to make, because a straightforward way

to eliminate x would be to compute
(⊕

i∈I xi ⊕ c
)

elsewhere. We will always have a gate G that
computes

⊕
i∈I xi⊕ c and that is not reachable by a direct path from an and-type gate. Fortunately,

in this case Lemma 2 shows how to compute it on the affine subspace defined by the substitution
without using x and without increasing the number of gates (later, an extra gate introduced by this
lemma is removed by normalization).

Thus, in this sketch we will be making arbitrary affine substitutions for sums that are computed
in gates without saying that we need to run the reconstruction procedure first. Also, we will make a
simple quadratic substitution z = (x⊕c1)(y⊕c2)⊕c3 only if the gates fed by z are canceled out after
the substitution, so that we do not need to propagate this quadratic value to other gates. We want
to stay in the class of rdq-sources, therefore we cannot make an affine substitution to a variable x if
it already has been used in the right-hand side of some quadratic restriction z = (x⊕ c1)(y⊕ c2)⊕ c3,
also we cannot make quadratic substitutions that overlap in the variables. In this proof sketch we
ignore these two issues, but they are addressed in the full proof in the next section.

Let A be a topologically minimal and-type gate (i.e., an and-type gate that is not reachable
from any and-type gate), let I1 and I2 be the inputs of A (I1 and I2 can be variables or internal
gates). Now we consider the following cases (see Figure 5).

1. At least one of I1, I2 (say, I1) is an internal gate of outdegree greater than one. There is a
constant c such that if we assign I1 = c, then A becomes constant. (For example, if A is an
and, then c = 0, if A is an or, then c = 1 etc.) When A becomes constant it eliminates all the
gates it feeds. Therefore, if we assign the appropriate constant to I1, we eliminate I1, two of
the gates it feeds (including A), and also a successor of A, four gates total, and we decrease
the measure by at least αI + 4β = 929

43 > δ.

2. At least one of I1, I2 (say, I1) is a variable of outdegree one. We assign the appropriate
constant to I2. This eliminates I2, A, a successor of A, and I1. This assignment eliminates at
least two gates and two variables, so the measure decrease is at least 2αI + 2β = 1339

43 > δ.

3. I1 and I2 are internal gates of outdegree one. Then if we assign the appropriate constant to I1,
we eliminate I1, A, a successor of A, and I2 (since I2 does not feed any gates). We decrease
measure by at least αI + 4β > δ.

18

I1 I2
∧A

Case 1

x I2
∧A

Case 2

I1 I2
∧A

Case 3

I1 x

∧A

Case 4

x y

∧ A

Case 5a

x y

∧A

Case 5(b)i

x y

∧A

⊕D

B C

∧ FE

z

Case 5(b)ii

Figure 5: Gate elimination process in Proof Outline of Theorem 2.

4. I1 is an internal gate of outdegree one, I2 is a variable of outdegree greater than one. Then
we assign the appropriate constant to I2. This assignment eliminates I2, at least two of its
successors (including A), a successor of A, and I1 (since it does not feed any gates). Again,
we decrease the measure by at least αI + 4β > δ.

5. I1 and I2 are variables of outdegree greater than one.

(a) I1 or I2 (say, I1) has outdegree at least three. By assigning the appropriate constant to
I1 we eliminate at least three of the gates it feeds and a successor of A, four gates total.

(b) I1 and I2 are variables of degree two. If A is a 2+-gate we eliminate at least four gates
by assigning I1 so in what follows we assume that A is a 1-gate. In this case A is a
troubled gate. We want to make the appropriate substitution and eliminate I1 (or I2),
its successor, A, and A’s successor.

i. If this substitution does not introduce new troubled gates, then we eliminate a
variable, three gates and decrease the number of troubled gates by one. Thus, we
decrease the measure by αI + 3 + αT = 9 3

43 = δ.

ii. If the substitution introduces troubled gates, then we consider which normalization
rule introduces troubled gates. The full case analysis is presented in the next section,
here we demonstrate just one case of the analysis. Let us consider the case when a
new troubled gate is introduced when we eliminate the gate fed by A (see Figure 5,
the variable z will feed a new troubled gate after assignments x = 0 or y = 0).
In such a case we make a different substitution: z = (x ⊕ c1)(y ⊕ c2) ⊕ c3. This
substitution eliminates gates A,D,E, F and a gate fed by F . Thus, we eliminate
one variable, five gates, but we introduce a new quadratic substitution, and decrease
the measure by at least αI + 5β − αQ = 9 3

43 = δ.

It is conceivable that when we count several eliminated gates, some of them coincide, so that we
actually eliminate fewer gates. Usually in such cases we can prove that some other gates become
trivial. This and other degenerate cases are handled in the full proof in the next section.

19

3.5.2 Full proof

Proof of Theorem 2. Since normalization does not increase the measure and does not change R, we
may assume that C is normalized.

In what follows we will further restrict R by decreasing the number of free variables either by one
or by two, then we will implement these substitutions in C and normalize C afterwards. Formally,
we do it as follows:

• We add an equation or two to R.

• Since we now compute the disperser on a smaller set, we simplify C (in particular, we disconnect
the substituted variables from the rest of the circuit). For this, we

– change the operations in the gates fed by the substituted variables or restructure the xor
part of the circuit according to Lemma 2,

– apply some normalization rules to remove some gates (and disconnect substituted vari-
ables).

• We count the decrease of µ.

• We further normalize the circuit (without increase of µ) to bring it to the normalized state
required for the next induction step.

Since s ≥ d+ 2, even if we add two more lines to R, the disperser will not become a constant.
This, in particular, implies that if a gate becomes constant then it is not an output gate and hence
feeds at least one other gate. By going through the possible cases we will show that it is always
possible to perform one or two consecutive substitutions matching at least one of the following types
(by ∆µ we denote the decrease of the measure after subsequent normalization).

1. Perform two consecutive affine substitutions to reduce the number of influential inputs by at
least three. Per one substitution, this gives ∆µ ≥ 1.5αI .

2. Perform one affine substitution to reduce the number of influential inputs by at least 2:
∆µ ≥ 2αI (numerically, this case is subsumed by the previous one).

3. Perform one affine substitution to kill four internal gates: ∆µ ≥ 4β + αI .

4. Perform one constant substitution to eliminate three internal gates including at least one
troubled gate so that no new troubled gate is introduced: ∆µ ≥ αI + 3 + αT .

5. Perform one quadratic substitution to kill five internal gates: ∆µ ≥ 5β − αQ + αI .

6. Perform two affine substitutions to kill at least five internal gates and replace a quadratic
substitution by an affine one, reducing the measure by at least 5β+αQ+2αI . Per substitution
this is ∆µ ≥ 2.5β +

αQ

2 + αI .

7. Perform one affine substitution to kill two internal gates and replace one quadratic substitution
by an affine one: ∆µ ≥ 2β + αQ + αI .

All substitutions that we perform are of the form such that adding them to an rdq-source results
in a new rdq-source.

20

We check all possible cases of (C,R). In every case we assume that the conditions of the previous
cases are not satisfied. We also rely on the specified order of applications of the normalization rules
where applicable.

Note that the measure can accidentally drop less than we expect if new troubled gates emerge.
We take care of this when counting the number of internal gates that disappear, recall Proposition 3
that guarantees the decrease of β per one eliminated gate. If some additional gate accidentally
disappears, it may introduces new troubled gates but does not increase the measure, because β ≥ 0.

Cases:

1. The circuit contains a protected variable q that either feeds an and-type gate or feeds at least
two internal gates. Then there is a type 7 substitution of q by a constant.

2. The circuit contains a protected 0-variable q occurring in the right-hand side of a quadratic
substitution together with some variable q′. We substitute a constant to q′. After this neither
q nor q′ are influential, so we have a type 2 substitution.

Note that after this case all protected variables are 1-variables feeding xor gates.

3. The circuit contains a variable x feeding an and-type gate T , and out(x) + out(T) ≥ 4. Then
if x gets the value that trivializes T , we remove four gates: T by Rule 2, and descendants of x
and T by Rule 3. If some of these descendants coincide, this gate becomes trivial (instead of
passing) and is removed by Rule 2 (instead of Rule 3), and an additional gate (a descendant
of this descendant) is removed by Rule 3. This makes a type 3 substitution.

Note that after this case all variables feeding and-gates have outdegree one or two.

4. There is an and-type gate T fed by two input gates x and y, one of which (say, x) has
outdegree 1. Adopt the notation from the following picture. In this and all the subsequent
pictures we show the outdegrees near the gates that are important for the case analysis.

x
1

y
1+

∧T

We substitute y by a constant trivializing T . This removes the dependence on x and y (which
are both influential and unprotected), a type 2 substitution.

5. There is an and-type gate T fed by two input gates x and y, and at this point (due to the
cases 3 and 4) we inevitably have out(T) = 1 and out(x) = out(y) = 2, that is, T is “troubled”.
Adopt calling conventions from the following picture:

x
2

y
2

∧T
1

D

B C

Since the circuit is normalized, B 6= D and C 6= D (Rule 4). One can now remove three gates
by substituting a constant to x that trivializes T . If in addition to the three gates one more
gate can be killed, we are done (substitution of type 3). Otherwise, we have just three gates,

21

but the troubled gate T is removed. If this does not introduce a new troubled gate, it makes
a substitution of type 4. Likewise, if this is the case for a substitution to y, we are done.

So in the remaining subcases of Case 5 we will be fighting the situation where only three gates
are eliminated while one or more troubled gates are introduced.

How can it happen that a new troubled gate is introduced? This means that something has
happened around some and-type gate E. Whatever has happened, it is due to two gates, B
and D, that became passing (if some of them became trivial, then one more gate would be
removed). The options are:

• E gets as input a variable instead of an internal gate (because some gate in between
became passing).

• A variable increases its outdegree from 1 to 2 (because a gate of degree at least two
became passing), and this variable starts to feed E (note that it could not feed it before,
because after the increase it would feed it twice).

• A variable decreases its outdegree to 2. This variable could not feed E before this happens,
because this would be Case 3. It takes at least one passing gate, X, to pass a new variable
to E, thus the decrease of the outdegree has happened because of a single passing gate
Y . In order to decrease the outdegree of the variable this gate must have outdegree 1,
thus it would be removed by Rule 4 as useless.

• E decreases its outdegree to 1.

– This could happen if two gates, B and D, became passing, and they fed a single
gate. However, in this case E should already have 2-variables as its inputs, Case 3.

– This could also happen if E feeds B and some gate X, and B becomes passing to
X. However, in this case B is useless (Rule 4). (Note that out(B) = 1, because
otherwise E would not decrease its outdegree to 1.)

E x

B

X

– Similarly, if E feeds D and some gate X, and D becomes passing to X.

Summarizing, only the two first possibilities could happen, and both pass some variable to E
through either B or D (or both).

The plan for the following cases is to exploit the local topology, that is, possible connections
between B, D, and C. First we consider “degenerate” cases where these gates are locally
connected beyond what is shown in the figure in case 5. After this, we continue to the more
general case.

(a) If B = C, then one can trivialize both T and B either by substituting a constant to x
or y or by one affine substitution y = x ⊕ c (using Proposition 2) for the appropriate
constant c (this can be easily seen by examining the possible operations in the two gates).
Since x and y are unprotected, the number of influential variables is decreased by 2,
making a substitution of type 2.

(b) Assume that D feeds both B and C. In this case, a new troubled gate may emerge only
because D is fed by a variable u, and it is passed to some and-type gate E. Note that
out(D) ≤ 2, because otherwise u would become a 3-variable and E would not become
troubled. Therefore, u cannot be passed by D to E directly, it is passed via B.

22

x
2

y
2

∧T
1

D

B
1+

C
∧E

z
2

u

If out(B) ≥ 2, then even if out(u) = 1, it must be that C = E or that B feeds C, because
otherwise u would become a 3-variable after substituting x. Neither are possible: C = E
would imply B = D and y = z, contradicting the assumption that D 6= B (from 5);
if B feeds C, that means that B = D, which is impossible. Therefore, we conclude
that out(B) = 1. So we can substitute constants for z, to make B a 0-gate, and for y,
to trivialize T . This way x ceases to be influential, and we have ∆µ ≥ 3αI for two
substitutions (type 1).

Note that after this case we can assume that D does not feed B. If it does, we switch the
roles of the variables x and y.

(c) Assume now that B feeds D, and D feeds C. (Or, symmetrically, C feeds D, and D
feeds B.) Then substituting y to trivialize T removes T , D, and C. Now we show that
this substitution introduces no new troubled gates, which contradicts our assumption
about new troubled gates. The gates C and D are passing the internal gate B. Thus,
the gate that used to be fed by C is now fed by B, therefore, locally nothing changed for
this gate. The only gate that now locally looks differently is the gate B, but it is now
fed by the variable x of degree 1, and, therefore, is not a troubled gate.

x
2

y
2

∧T
1

D

B C

(d) We can now assume that B and D are not connected (in any direction).

Indeed, if B feeds D, we can switch the roles of x and y unless C feeds D (impossible,
because then D has three inputs: T , B, and C) or unless we switched x and y before
(that is, D feeds C, Case 5c).

i. Assume that D feeds a new troubled gate under the substitution of x. The troubled
gate E gets some variable z from D (directly, as D and B are not connected).

x
2

y
2

∧T
1

D

B C

∧E

z
1+

• If out(z) ≥ 2, then out(D) = 1 and E is fed by another variable t either directly
or via B. In the former case, we can substitute t to trivialize E, this kills E and
the gate it feeds, and also makes D and then T 0-gates; a type 3 substitution.
In the latter case:

23

x
2

y
2

t

∧T
1

D
1

B C

∧E

z
2+

– if out(B) ≥ 2, then B is a xor-type gate (see Case 3), and by substituting
x = t⊕ c for the appropriate constant c, we can make B a constant trivializing
E and remove two more descendants of B and E, a type 3 substitution;

– if out(B) = 1, then we can set z and y to constants trivializing T and E,
respectively. Then B becomes a 0-gate and is eliminated, which means that x
becomes a 0-variable. We then get a substitution of type 1.

We can now assume that out(z) = 1 and thus out(D) ≥ 2, because z must get
outdegree two in order to feed the new troubled gate.

• If D is an and-type gate, substituting z by the appropriate constant trivializes D
and kills both gates that it feeds; also T becomes a 0-gate, a type 3 substitution.

• If z is protected, we set x and z to constants trivializing T , D, and E. This
additionally removes B and the gates that E feeds, at least five gates in total.
Since we also kill a quadratic substitution, this makes a type 6 substitution.

• Since we can now assume that z is unprotected and D is an xor-type gate, we
can make a substitution z = (x⊕ c1)(y ⊕ c2)⊕ c3 for appropriate constants c1,
c2, c3 to assign D a value that trivializes E. This makes T a 0-gate and removes
also D, E, another gate that D feeds, and the gate(s) that E feeds. As usual, if
some passing gates coincide, another gate is removed. Taking into account the
penalty for introducing a quadratic substitution, we get a substitution of type 5.

ii. Since D does not feed a new troubled gate, B does, and B is fed directly by a variable
t (since B and D are not connected). The new troubled gate E must be also fed
directly by a variable z (because D does not feed it).

x
2

y
2

∧T

D

B
1+

C

∧
E

z

t
1+

• If out(B) ≥ 2 (which means B is a xor-type gate, see Case 3), then by substituting
x = t⊕ c (using Proposition 2) for the appropriate constant c, we can make B a
constant trivializing E and remove two more descendants of B and E, a type 3
substitution.

• If out(B) = 1, then we can set z and y to constants trivializing T and E,
respectively. Then B becomes a 0-gate and is eliminated, which means that x
becomes a 0-variable. We then get a substitution of type 1.

—————————–

Starting from the next case we will consider a topologically minimal and-type gate and call it
A for the remaining part of the proof. Here A is topologically minimal if it cannot be reached

24

from another and-type gate via a directed path. (Note that there are no cycles containing
and-type gates in a fair semicircuit. Thus, it is always possible to find a topologically minimal
and-type gate.)

Note that the circuit C must contain at least one and-type gate (otherwise it computes an
affine function, and a single affine substitution makes it constant). The minimality implies
that both inputs of A are computed by fair cyclic xor-circuits (note that a subcircuit of a fair
circuit is fair, because it corresponds to a submatrix of a full-rank matrix); in particular, they
can be input gates.

6. One input of A is an input gate x of outdegree 2 while the other one is an internal gate Q of
outdegree 1.

x
2 1

Q

∧A

Recall that x is unprotected due to Case 1, and x cannot feed Q because of Rule 4. Substituting
x by the constant trivializing A eliminates the two successors of x, all the successors of A, and
makes Q a 0-gate which is then eliminated by Rule 1. A type 3 substitution. (As usual, if the
only successor of A coincides with the other successor of x then this gate becomes constant so
its successors are also eliminated. That is, in any case at least four gates are eliminated.)

7. One input to A is an internal gate Q. Denote the other input by P . If P is also an internal
gate and has outdegree larger than Q we switch the roles of P and Q.

In this case we will try to substitute a value to Q in order to trivialize A. Q is a gate computed
by a fair xor-circuit, so it computes an affine function c⊕

⊕
i∈I xi. Note that I 6= ∅ because

of Rule 2. For this, we use the xor-reconstruction procedure described in Lemma 2. In order
to perform it, we need at least one unprotected variable xi with i ∈ I.

(a) Such a variable x1 exists.

We then add the substitution x1 = b ⊕ c ⊕
⊕

i∈I\{1} xi to the rdq-source R for the
appropriate constant b (so that Q on the updated R computes the constant trivializing A).
We could now simply replace the operation in Q by this constant (since the just updated
circuit computes correctly the disperser on the just updated R). However, we need to
eliminate the just substituted variable x1 from the circuit. To do this, we perform the
reconstruction described in Lemma 2. Note that it only changes the in- and outdegrees of
x1 (replacing it by a new internal gate Z) and Q. No new troubled gates are introduced,
and the subsequent application of Rule 2 to Q removes Q without introducing new
troubled gates as well.

Moreover, normalizations remove all descendants of Q, all descendants of A, and, in the
case out(P) = 1, Rule 1 removes P if it is an internal gate, or P becomes a 0-variable, if
it was a variable. It remains to count the decrease of the measure.

Below we go through several subcases depending on the type of the gate P .

i. Q is a 2+-gate. We recall the general picture of xor-reconstruction.

25

x1

P
1+

⊕
2+
Q

∧A

xor-reconstruction

⊕Z

P
1+ 3+

Q

∧A

After the reconstruction, there are at least three descendants of Q and at least one
descendant of A, a type 3 substitution.

ii. Q is an internal 1-gate and P is an input gate. Then P has outdegree 1 and is
unprotected (see Cases 6, 1).

x1

P
1

⊕
1
Q

∧A

xor-reconstruction

⊕Z

P
1 2

Q

∧A

Note that P 6= x1 since the only outgoing edge of P goes to an and-type gate. This
means that P is left untouched by the xor-reconstruction. After trivializing A the
circuit becomes independent of both x1 and P giving a type 2 substitution.

iii. Q is an internal 1-gate and P is an internal gate. Then P is a 1-gate (if the outdegree
of P were larger we would switch the roles of P and Q).

x1

⊕
1

P ⊕
1
Q

∧A

xor-reconstruction

⊕Z

⊕
1

P
2
Q

∧A

Again, P is left untouched by the xor-reconstruction since it only has one successor
and it is of and-type while the xor-reconstruction is performed in the linear part
of the circuit. After the substitution, we remove two successors of Q, at least one
successor of A, and make P a 0-gate. A type 3 substitution. Note that P cannot be
a successor of Q because of Rule 4.

(b) All variables in the affine function computed by Q are protected.

i. Both inputs to Q, say xj and xk, are variables, and they occur in the same quadratic
substitution w = (xj⊕c)(xk⊕c′)⊕c′′. Then perform a substitution xj = xk⊕c′′′ (using
Proposition 2) in order to trivialize the gate A. It kills the quadratic substitution
(and does not harm other quadratic substitutions, because xj and xk could not occur
in them), Q, A, its descendant (and more, but we do not need it), which makes
∆µ ≥ 3β + αQ + αI , a type 7 substitution.

ii. Q is a 2+-gate. Take any j ∈ I. Assume that xj occurs in a quadratic substitution
xp = (xj ⊕ a)(xk ⊕ b) ⊕ c. Recall that at this point all protected variables are
1-variables feeding xor-gates (see Cases 1 and 2). We substitute xk by a constant d
and normalize the circuit. This eliminates the successor of xk, kills the quadratic
substitution, and makes xj unprotected. If at least two gates are removed during
normalization then we get ∆µ ≥ 2β+αQ+αI , a type 7 substitution. In what follows
we assume that the only gate removed during normalization after the substitution
xk ← d is the successor of xk.

26

If the gate Q is not fed by xk then it has outdegree at least 2 after the substitution
xk ← d and normalizing the descendants of xk. If the gate Q is fed by xk then its
second input must be an internal xor-gate Q′ (if it were an input gate it would be a
variable xj but then we would fall into Case 7(b)i). Then after substituting xk ← d
and normalizing Q the gate Q′ feeds A and has outdegree at least 2. We denote Q′

by Q in this case.
Hence in any case, in the circuit normalized after the substitution xk ← d, the gate
A is fed by the 2+-gate Q that computes an affine function of variables containing an
unprotected variable xj . We then make Q constant trivializing A by the appropriate
affine substitution to xj . This kills four gates. Together with the substitution xk ← d,
it gives ∆µ ≥ 5β + αQ + 2αI , a type 6 substitution.

Hence in what follows we assume that out(Q) = 1. Therefore P is either a variable
or an internal xor-type 1-gate.

iii. P is an input gate. Then it has the following properties as in Case 7(a)ii. Take
any j ∈ I and assume that xj appears with xk in a quadratic substitution. We
first substitute xk ← d and normalize the circuit. After this the second input of A
still computes a linear function that depends on xj which is now unprotected. We
make an affine substitution to xj trivializing A. This makes P a 0-variable, a type 1
substitution.

iv. P is an internal xor-type 1-gate. If P computes an affine function of variables at
least one of which is unprotected, we are in Case 7(a)iii with P and Q exchanged. So,
in what follows we assume that both P and Q compute affine functions of protected
variables.

A. Both inputs to P or Q (say, P) are variables xp and xq. Let xj be a variable
from the affine function computed at Q and let xk be its couple. Note that
xj 6= xp, xq while it might be the case that xk = xp or xk = xq. We substitute
xk by a constant to make xj unprotected. We then trivialize A by an affine
substitution to xj . This way, we kill the dependence on three variables by two
substitutions. A type 1 substitution.
Thus in what follows we can assume that both P and Q have at least one internal
xor-gate as an input.

B. One of P and Q (say, Q) computes an affine function of variables one of which
(call it xj) has a couple xk that does not feed P . We substitute xk by a constant
and normalize the descendant of xk. It only kills one xor-gate fed by xk and
makes xj unprotected. Note that at this point P is still a 1-xor. We then trivialize
A by substituting xj by an affine function. Similarly to Case 7(a)iii, this kills
four gates and gives, for two substitutions, ∆µ ≥ 5β + αQ + 2αI . A type 6
substitution.

C. Since P and Q, and gates that feed them all compute nontrivial functions
(because of Rule 2), the only case when the condition of the previous case does
not apply is the following: P computes an affine function on a single variable xi,
Q computes an affine function on a single variable xj , the variables xi and xj
appear together in a quadratic substitution, and moreover xi feeds Q while xj
feeds P . But this is just impossible. Indeed, since xi is a protected variable it
only feeds Q. As Q computes an affine function on xi, Lemma 1 guarantees that
there is a path from xi to Q. But this path must go through P and A leading to
a cycle that goes through an and-type gate A.

27

Acknowledgements

The research presented in Sections 3.2, 3.4, and 3.5 is supported by Russian Science Foundation
(project 16-11-10123). The research presented in Section 3.3 is partially supported by NSF grant
1319051.

We would like to thank Dmitry Itsykson and Alexander Knop for their valuable comments on
earlier versions, and Olga Melanich for proofreading the manuscript. We also would like to thank
the anonymous reviewers for their helpful comments.

References

[And87] Alexander E. Andreev. On a method for obtaining more than quadratic effective lower
bounds for the complexity of π-schemes. Moscow Univ. Math. Bull., 42(1):63–66, 1987.

[AT11] Kazuyuki Amano and Jun Tarui. A well-mixed function with circuit complexity 5n:
Tightness of the lachish-raz-type bounds. Theor. Comput. Sci., 412(18):1646–1651,
2011.

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations.
In CCC-98, 1998.

[BK12] Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials.
SIAM J. Comput., 41(4):880–914, 2012.

[BKS+10] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simu-
lating independence: New constructions of condensers, Ramsey graphs, dispersers, and
extractors. J. ACM, 57(4), 2010.

[Blu84] Norbert Blum. A Boolean function requiring 3n network size. Theor. Comput. Sci.,
28:337–345, 1984.

[Bou07] Jean Bourgain. On the construction of affine extractors. GAFA Geometric And
Functional Analysis, 17(1):33–57, 2007.

[BV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Javier
Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in
Computer Science, pages 163–173. Springer, 2014.

[Cai01] Jin-Yi Cai. S2 ⊆ ZPPNP . In Proceedings 2001 IEEE International Conference on
Cluster Computing, pages 620–628, Oct 2001.

[CK15] Ruiwen Chen and Valentine Kabanets. Correlation bounds and #sat algorithms for small
linear-size circuits. In Dachuan Xu, Donglei Du, and Dingzhu Du, editors, Computing
and Combinatorics - 21st International Conference, COCOON 2015, Beijing, China,
August 4-6, 2015, Proceedings, volume 9198 of Lecture Notes in Computer Science,
pages 211–222. Springer, 2015.

[CKK+15] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David
Zuckerman. Mining circuit lower bound proofs for meta-algorithms. Computational
Complexity, 24(2):333–392, 2015.

28

[CT15] Gil Cohen and Avishay Tal. Two structural results for low degree polynomials and
applications. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA,
volume 40 of LIPIcs, pages 680–709. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

[DC89] Patrick W. Dymond and Stephen A. Cook. Complexity theory of parallel time and
hardware. Inf. Comput., 80(3):205–226, 1989.

[DK11] Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n− o(n) lower
bound on the circuit complexity of affine dispersers. In Filip Murlak and Piotr Sankowski,
editors, Mathematical Foundations of Computer Science 2011 - 36th International
Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, volume
6907 of Lecture Notes in Computer Science, pages 256–265. Springer, 2011.

[DKMM15] Evgeny Demenkov, Alexander S. Kulikov, Olga Melanich, and Ivan Mihajlin. New lower
bounds on circuit size of multi-output functions. Theory Comput. Syst., 56(4):630–642,
2015.

[Dvi12] Zeev Dvir. Extractors for varieties. Computational Complexity, 21(4):515–572, 2012.

[FGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach
for the analysis of exact algorithms. J. ACM, 56(5), 2009.

[GK16] Alexander Golovnev and Alexander S. Kulikov. Weighted gate elimination: Boolean
dispersers for quadratic varieties imply improved circuit lower bounds. In Madhu
Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 405–411. ACM,
2016.

[GKST16] Alexander Golovnev, Alexander S. Kulikov, Alexander Smal, and Suguru Tamaki. Cir-
cuit size lower bounds and #sat upper bounds through a general framework. Electronic
Colloquium on Computational Complexity (ECCC), 23:22, 2016.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,
editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May
28-30, 1986, Berkeley, California, USA, pages 6–20. ACM, 1986.

[H̊as98] Johan H̊astad. The shrinkage exponent of de Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998.

[HU69] John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and Their Relation to
Automata. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1969.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n− o(n) for Boolean
circuits. In Krzysztof Diks and Wojciech Rytter, editors, Mathematical Foundations of
Computer Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland,
August 26-30, 2002, Proceedings, volume 2420 of Lecture Notes in Computer Science,
pages 353–364. Springer, 2002.

[IN93] Russell Impagliazzo and Noam Nisan. The effect of random restrictions on formula size.
Random Struct. Algorithms, 4(2):121–134, 1993.

29

[Khr71] Valeriy M. Khrapchenko. A method of determining lower bounds for the complexity of
π-schemes. Math. Notes of the Acad. of Sci. of the USSR, 10(1):474–479, 1971.

[KK06] Arist Kojevnikov and Alexander S. Kulikov. A new approach to proving upper bounds
for MAX-2-SAT. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages
11–17. ACM Press, 2006.

[KK10] Arist Kojevnikov and Alexander S. Kulikov. Circuit complexity and multiplicative
complexity of Boolean functions. In Fernando Ferreira, Benedikt Löwe, Elvira Mayor-
domo, and Lúıs Mendes Gomes, editors, Programs, Proofs, Processes, 6th Conference
on Computability in Europe, CiE 2010, volume 6158 of Lecture Notes in Computer
Science, pages 239–245. Springer, 2010.

[KM65] Boris M. Kloss and Vadim A. Malyshev. Estimates of the complexity of certain classes
of functions. Vestn.Moskov.Univ.Ser.1, 4:44–51, 1965. In Russian.

[KRT13] Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds for
demorgan formula size. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 588–597. IEEE
Computer Society, 2013.

[Kul99] Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. Theor.
Comput. Sci., 223(1-2):1–72, 1999.

[Li11] Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the
26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose,
California, June 8-10, 2011, pages 137–147. IEEE Computer Society, 2011.

[Li15] Xin Li. Extractors for affine sources with polylogarithmic entropy. Electronic Colloquium
on Computational Complexity (ECCC), 22:121, 2015.

[LR01] Oded Lachish and Ran Raz. Explicit lower bound of 4.5n− o(n) for Boolean circuits.
In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings
on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion,
Crete, Greece, pages 399–408. ACM, 2001.

[LS73] Edward A. Lamagna and John E. Savage. On the logical complexity of symmetric
switching functions in monotone and complete bases. Technical report, Brown University,
1973.

[Nec66] Edward I. Nechiporuk. On a Boolean function. Doklady Akademii Nauk. SSSR,
169(4):765–766, 1966.

[NTW04] Arfst Nickelsen, Till Tantau, and Lorenz Weizsäcker. Aggregates with component size
one characterize polynomial space. Electronic Colloquium on Computational Complexity
(ECCC), 028, 2004.

[Nur09] Sergey Nurk. An 20.4058m upper bound for Circuit SAT. Technical Report 10, Steklov
Institute of Mathematics at St.Petersburg, 2009. PDMI Preprint.

[Pau77] Wolfgang J. Paul. A 2.5n-lower bound on the combinational complexity of Boolean
functions. SIAM J. Comput., 6(3):427–443, 1977.

30

[PZ93] Mike Paterson and Uri Zwick. Shrinkage of de Morgan formulae under restriction.
Random Struct. Algorithms, 4(2):135–150, 1993.

[Raz85] Alexander A. Razborov. Lower bound on monotone complexity of some Boolean
functions. Doklady Akademii Nauk. SSSR, 281(4):798–801, 1985.

[RB12] Marc D. Riedel and Jehoshua Bruck. Cyclic boolean circuits. Discrete Applied Mathe-
matics, 160(13-14):1877–1900, 2012.

[Riv77] Ronald L. Rivest. The necessity of feedback in minimal monotone combinational circuits.
IEEE Trans. Computers, 26(6):606–607, 1977.

[San10] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and
QBF satisfiability. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 183–192.
IEEE Computer Society, 2010.

[Sav14] Sergey Savinov. Upper bounds for the Boolean circuit satisfiability problem. Master
Thesis defended at St.Peterburg Academic University of Russian Academy of Sciences,
2014. In Russian.

[Sch74] Claus-Peter Schnorr. Zwei lineare untere Schranken für die Komplexität Boolescher
Funktionen. Computing, 13(2):155–171, 1974.

[Sch76] Claus-Peter Schnorr. The combinational complexity of equivalence. Theor. Comput.
Sci., 1(4):289–295, 1976.

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems
Technical Journal, 28:59–98, 1949.

[Sha11] Ronen Shaltiel. Dispersers for affine sources with sub-polynomial entropy. In Rafail
Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 247–256. IEEE
Computer Society, 2011.

[SS91] Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation and
interpolation problems. In 32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, 1-4 October 1991, pages 378–383. IEEE Computer
Society, 1991.

[ST13] Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hardness
for formulas over the full binary basis. Computational Complexity, 22(2):245–274, 2013.

[Sto77] Larry J. Stockmeyer. On the combinational complexity of certain symmetric Boolean
functions. Mathematical Systems Theory, 10:323–336, 1977.

[Sub61] Bella A. Subbotovskaya. Realizations of linear functions by formulas using +, ·,−.
Doklady Akademii Nauk. SSSR, 136(3):553–555, 1961.

[Tal14] Avishay Tal. Shrinkage of de Morgan formulae by spectral techniques. In Foundations
of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 551–560.
IEEE, 2014.

31

[VW13] Salil Vadhan and Ryan Williams. Personal communication, 2013.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.
SIAM J. Comput., 42(3):1218–1244, 2013. Extended abstract appeared in Proc. STOC-
2010.

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. JACM, 61(1), 2014. Extended
abstract appears in Proc. CCC-2011.

[Yao85] Andrew C. Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In FOCS, pages 1–10. IEEE Computer Society, 1985.

[Yeh11] Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256,
2011.

[Zwi91] Uri Zwick. A 4n lower bound on the combinational complexity of certain symmetric
Boolean functions over the basis of unate dyadic Boolean functions. SIAM J. Comput.,
20(3):499–505, 1991.

32

	Introduction
	Definitions
	Generalizations of circuits

	Lower bound
	Overview
	Cyclic circuit transformations
	Basic substitutions
	Normalization and troubled gates
	Affine substitutions

	Read-once depth-2 quadratic sources
	Circuit complexity measure
	Gate elimination
	Proof outline
	Full proof

