
Solving 3-Superstring in 3n/3 Time

Alexander Golovnev1, Alexander S. Kulikov2,3, and Ivan Mihajlin4

1 New York University
2 St. Petersburg Department of Steklov Institute of Mathematics

3 Algorithmic Biology Laboratory, St. Petersburg Academic University
4 St. Petersburg Academic University

Abstract. In the shortest common superstring problem (SCS) one is
given a set s1, . . . , sn of n strings and the goal is to find a shortest string
containing each si as a substring. While many approximation algorithms
for this problem have been developed, it is still not known whether it
can be solved exactly in fewer than 2n steps. In this paper we present an
algorithm that solves the special case when all of the input strings have
length 3 in time 3n/3 and polynomial space. The algorithm generates a
combination of a de Bruijn graph and an overlap graph, such that a SCS
is then a shortest directed rural postman path (DRPP) on this graph.
We show that there exists at least one optimal DRPP satisfying some
natural properties. The algorithm works basically by exhaustive search,
but on the reduced search space of such paths of size 3n/3.

1 Introduction

The shortest common superstring problem (SCS) is: given a set {s1, . . . , sn}
of n strings, find a shortest string containing each si as a substring (w.l.o.g.,
we assume that no input string is a subtstring of another). The problem is
known to be NP-hard and has many practical applications including data stor-
age, data compression, and genome assembly. For this reason, approximation
algorithms for SCS are widely studied. For a long time the best known ap-
proximation ratio was 2.5 by Sweedyk [26] (the same bound also follows from
2/3-approximation for MAX-ATSP [15,24]). Very recently the bound was im-
proved to 2 11

23 by Mucha [23]. The best known inapproximability ratio (under
the P 6= NP assumption) is 345

344 by Karpinski and Schmied [17].
At the same time it is not known whether SCS can be solved in fewer than

O∗(2n) steps (O∗(·) suppresses polynomial factors of input length). Note that
SCS is a permutation problem: to find a string containing all si’s in a given order
one just overlaps the strings in this order. Thus, the trivial algorithm requires
O∗(n!) time. Now consider the following suffix graph of the given set of strings:
the set of vertices is {s1, . . . , sn}, vertices si and sj are joined by an arc of weight
|suffix(si, sj)| where suffix(si, sj) is the shortest string such that sj is a suffix of
si ◦ suffix(si, sj) (where ◦ denotes concatenation). SCS can be solved by finding
a shortest traveling salesman path (TSP) in this graph. For TSP, the classical
dynamic programming based O∗(2n) algorithm discovered by Bellman [2] and
independently by Held and Karp [12] is well-known.

There are two natural special cases of SCS: the case when the size of the
alphabet is bounded by a constant and the case when all input strings have
length r. The latter case is called r-SCS. Note that when both these parameters
are bounded the problem degenerates as the number of possible input strings
is then also bounded by a constant. It is known that both SCS over the binary
alphabet and 3-SCS are NP-hard, while 2-SCS can be solved in linear time [10]
and 2-SCS with multiplicities (where each input string is given together with the
number of its occurrences in a superstring) can be solved in quadratic time [7].
Vassilevska [27] showed that SCS over the binary alphabet cannot be much
easier than the general case. Namely, she provided a polynomial-time reduction
of general SCS to SCS over the binary alphabet that preserves the number of
input strings. It implies that α-approximation of SCS over the binary alphabet
is not easier than α-approximation of general SCS. It also means that an O∗(cn)-
algorithm for SCS over the binary alphabet implies an O∗(cn)-algorithm for the
general case. Hence SCS for smaller size alphabet cannot be much easier. Our
result suggests that SCS for shorter strings can actually be easier to solve.

In this paper we present an algorithm solving a special case when all of
the input strings have length 3 in time O∗(3n/3) and polynomial space. The
approach is based on finding a shortest rural postman path in the de Bruijn
graph of the given set of strings. The algorithm works basically by exhaustive
search, but having reduced the search space to size 3n/3, and then inspecting
each possibility in polynomial time. We show that for the case of 3-strings to
find an optimal rural path it is enough to guess where such a path enters each
weakly connected component formed by input strings. We then show that for
a component on k arcs there are at most k such entry points. Since the total
number of arcs is n, the running time is roughly kn/k and this does not exceed
3n/3 (for k ∈ N).

The current situation with exact algorithms for SCS is similar to what is
known for some other NP-hard problems — say, the satisfiability problem (SAT),
the maximum satisfiability problem (MAX-SAT), and the traveling salesman
problem (TSP). Namely, despite many efforts the best known algorithms for
the general versions of these problems run in time O∗(2n) (n being the number
of variables/vertices). At the same time better upper bounds are known for
special cases of these problems: O(1.308n) for 3-SAT [13], O(1.731n) for MAX-
2-SAT [28], O(1.251n) for TSP on cubic graphs [14], O∗(1.109n) for (n, 3)-MAX-
2-SAT [19], cn (where c < 2) for SAT [5] and MAX-SAT [8,19] on formulas with
constant clause density. Moreover, it is known that k-SAT can be solved in time
O((2 − 2/k)n) [22] and TSP can be solved in time O((2 − ε)n), where ε > 0
depends only on the degree bound of a graph [4].

2 General setting

Throughout the paper S = {s1, . . . , sn} is an input set of strings over an al-
phabet Σ, and n is the number of strings. W.l.o.g. we assume that no si is a
substring of sj for any i 6= j.

For strings s and t, by s ◦ t we denote the concatenation of s and t. By
overlap(s, t) we denote the longest suffix of s that is also a prefix of t. By
prefix(s, t) we denote the first |s| − |overlap(s, t)| symbols of s and by suffix(s, t)
we denote the last |t| − |overlap(s, t)| symbols of t. Clearly,

prefix(s, t) ◦ overlap(s, t) = s and overlap(s, t) ◦ suffix(s, t) = t .

2.1 Suffix graphs and the traveling salesman problem

Clearly, s◦suffix(s, t) is the shortest string containing s and t in this order. More
generally, the shortest string containing strings si1 , . . . , sin in this order is

si1 ◦ suffix(si1 , si2) ◦ · · · ◦ suffix(sin−1
, sin) .

Thus, the goal of SCS is to find a permutation of n input strings minimizing
the total length of the suffix function. As mentioned in the introduction, one
can define a complete directed graph on the given set {s1, . . . , sn} of n strings
as a set of vertices where vertices si and sj are joined by an arc of weight
|suffix(si, sj)| (suffix graph). Solving SCS then corresponds to solving TSP in this
graph. This connection has been used in essentially all previous approximation
algorithms for SCS. This graph however is asymmetric (i.e., directed) and the
best known algorithm due to Bellman [2], Held and Karp [12] uses O∗(2n) time
and space. There are also algorithms based on inclusion-exclusion with running
time O∗(2n ·M) and space O∗(M) [18,16,1] (here,M is the maximal arc weight).
Lokshtanov and Nederlof [21] show how to solve TSP in O∗(2n ·M) time with
only O∗(1) = poly(n, logM) space. For symmetric TSP, Björklund [3] recently
came up with an O∗(1.657n ·M) time randomized algorithm. Note that for SCS,
M does not exceed the size of the input, hence the mentioned inclusion-exclusion
algorithm solves SCS in O∗(2n) time and polynomial space.

2.2 De Bruijn graphs and the rural postman problem

In this paper we deal with another useful concept, namely de Bruijn graphs. Such
graphs are widely used in genome assembly, one of the most important practical
applications of SCS [25]. At the same time they have only few applications in
theoretical investigations of SCS. To simplify its definition from now on we stick
to strings of length 3 only. So, let S = {s1, . . . , sn} be a set of 3-strings over the
alphabetΣ. The de Bruijn graphDG is a weighted complete directed graph (with
loops, but without multiple arcs) with the set of vertices Σ2. Distinct vertices s
and t are joined by an arc of weight |suffix(s, t)|. Also, for each string from Σ2

consisting of the same two symbols there is a loop of weight 1. Intuitively, the
weight of an arc (s, t) is equal to the number of symbols we need to spell going
from a string s to a string t. (Particularly, going from a string AA to itself we
need to spell one more A, that is why loops are of weight 1.) Thus, all arcs in
DG have weight either 1 or 2. Note that any 3-string s over Σ defines an arc of
weight 1 in DG: the arc joins the prefix of s of length 2 and the suffix of s of

length 2. Thus, what we are looking for in the SCS problem is a shortest path
in DG going through all the arcs ES given by S.

This problem is known as directed rural postman path problem (DRPP).
In DRPP one is given a weighted graph G = (V,E) and a subset ER ⊆ E
of its arcs and the goal is to find a shortest path in G going through all the arcs
of ER. The arcs from ER are called required, all the remaining arcs are called
optional. A path going through all the required arcs is called a rural path and a
shortest such path is called an optimal rural path.5

DRPP has many practical applications (see, e.g., [9,11]). At the same time
almost no non-trivial exact algorithms are known for DRPP. As with SCS and
TSP, for DRPP there is a simple algorithm with the running time O∗(n!) (for
DRPP, by n we denote the number of required arcs) as well as dynamic pro-
gramming based algorithm with running time O∗(2n). DRPP generalizes such
problems as Chinese Postman Problem and Asymmetric TSP. If the set of re-
quired arcs forms a single weakly connected component (weakly connected com-
ponents of a directed graph are just connected components in this graph with
all directed arcs replaced by undirected edges), then the problem can be solved
in polynomial time: all one needs to do is to add arcs of minimal total weight
to imbalanced vertices. This can be done by finding a minimum weight perfect
matching in an appropriate bipartite graph (details can be found, e.g., in [6]). If
the set of required arcs forms more than just one weakly connected component
then DRPP becomes NP-hard [20]. The reason is that now one not only needs
to balance all the imbalanced vertices by adding arcs of minimal total weight
but also to guarantee somehow that the resulting graph is connected. This turns
out to be harder.

However 2-SCS can be solved in polynomial time even if the input strings
form more than one weakly connected component. The important property of 2-
SCS (as opposed to, say, 3-SCS) is that 2-strings from different weakly connected
components always have zero overlap. This means that one can find an optimal
rural path for each component separately.

3 Algorithm

The set S of 3-strings defines the required set of arcs ES in the de Bruijn
graphDG. What we are looking for is a shortest path in this graph going through
all the required arcs (an optimal rural path). Optional arcs have weight 1 or 2
while all required arcs have weight 1. For each vertex of the graph we know the
number of adjacent incoming and outgoing required arcs, but we do not know
the number of adjacent incoming and outgoing optional arcs (in an optimal rural
path).

Note the following two simple properties of an optimal rural path.

5 We use the term “path” to denote a path that may go through some vertices and
arcs more than once (a term “walk” is also used in the literature for this). A simple
path is a path without repeated vertices and arcs.

– An optimal rural path does not start and does not end with an optional arc
(removing such an arc leaves a rural path of smaller weight).

– There always exists an optimal rural path that does not contain an optional
arc followed by another optional arc. Two such arcs can be replaced by a
single arc. Since all arcs have weight 1 or 2 this does not increase the total
weight of a path.

By dre
in(v) and dre

out(v) we denote the number of required incoming and out-
going arcs to v, respectively: dre

in(v) = |{(u, v) ∈ ES}| and dre
out(v) = |{(v, w) ∈

ES}|. Similarly, for a path P in DG, by dop
in (P, v) and d

op
out(P, v) we denote the

number of optional incoming and outgoing arcs for the vertex v in the path P :

dop
in (P, v) = |{(u, v) | (u, v) ∈ P, (u, v) 6∈ ES}|,

dop
out(P, v) = |{(v, w) | (v, w) ∈ P, (v, w) 6∈ ES}| .

Recall that a path may go through a particular vertex more than once, so these
degrees may be greater than 1. Also, the path P may go through a particular arc
more than once hence the sets in the right hand side of the definition dop

in (P, v)
and dop

out(P, v) are actually multisets. In other words, dop
in (P, v) (dop

out(P, v)) is
the number of times the path P enters (respectively, leaves) the vertex v by an
optional arc.

Definition 1 (configuration). A configuration is a pair f = (fin, fout) of
functions from V to N. A configuration tells for each vertex the number of in-
coming and outgoing optional arcs of a path. Consequently we say that a configu-
ration is consistent with a path P iff fin(v) = dopin (P, v) and fout(v) = dopout(P, v)
for each vertex v. A path in DG determines a configuration in a natural way.

Definition 2 (normal configuration, special vertex). We say that a con-
figuration f = (fin, fout) is normal iff the following three conditions hold.

– It is consistent with at least one rural path. This, in particular, means that
for all but two vertices v (the two exceptional vertices being the first and the
last vertices of a path)

fin(v) + drein(v) = fout(v) + dreout(v). (1)

– For each weakly connected component C of ES ,∑
v∈C

min{fin(v), fout(v)} ≤ 1 . (2)

I.e., each weakly connected component contains at most one vertex that has
both incoming and outgoing optional arcs. Moreover if such a vertex exists
then it has just one incoming or one outgoing arc. Such a vertex is called
special.

– For each vertex v, if v has only incoming (outgoing) required arcs then it has
only outgoing (incoming) optional arcs:

(dreout(v) = 0⇒ fin(v) = 0) and (drein(v) = 0⇒ fout(v) = 0). (3)

In particular, a vertex v with min{drein(v), dreout(v)} = 0 cannot be special.

Definition 3 (normal path). A normal path is a path with a normal configu-
ration.

The motivation for studying configurations is given by the following lemmas
(which are proven below).

Lemma 1. There exists an optimal rural path that is normal.

Lemma 2. Given a normal configuration f of an (unknown) optimal rural path
we can find in polynomial time an optimal rural path consistent with f .

It remains to show that the number of different normal configurations is not
too large. This is guaranteed by the following lemmas.

Lemma 3. A weakly connected component C of ES consisting of k arcs has at
most k different normal configurations.

Lemma 4. All normal configurations can be enumerated in time O∗(3n/3) and
polynomial space.

Using these four lemmas the main result of the paper follows almost imme-
diately.

Theorem 1. The 3-SCS problem can be solved in time O∗(3n/3) and polynomial
space.

Proof. Due to Lemma 4 we can enumerate all normal configurations in time
O∗(3n/3) and polynomial space. By Lemma 1 at least one of these configurations
corresponds to an optimal rural path. Given such a configuration we can recover
an optimal rural path by Lemma 2. ut

3.1 Proofs

In this subsection, we complete the analysis of the algorithm by proving the
lemmas given in the previous subsection. In the proofs, we often consider a
path as a sequence of vertices. In this notation, lower case letters are used to
denote vertices while upper case letters denote parts of a path, i.e., sequences of
vertices (possibly empty). E.g., to specify that a path P starts with a vertex s,
goes through a vertex v and ends in a vertex t we write P = sAvBt. In the
pictures below, required arcs are shown in bold, optional arcs are thin and gray,
snaked arcs denote just a part of a path.

Proof (of Lemma 1). Let P be an optimal rural path containing the minimal
number of optional arcs. We show that if P is not a normal path, then the
number of optional arcs in P can be decreased without increasing its weight.
This is done by replacing two optional arcs with a new one. Since all arcs have
weights 1 or 2, this replacement does not increase the weight of P .

Consider a weakly connected component C and let x be the last vertex of C
in the path P . To guarantee that (2) holds we first transform P such that for
all vertices v of C with the only possible exception of x we have

min{dop
in (P, v), d

op
out(P, v)} = 0 .

Assume that a vertex v 6= x not fulfilling this equality exists in C. Denote
incoming and outgoing optional arcs of v by (w1, v) and (v, u1), respectively. Let
u2 be a vertex such that the arc (u2, v) precedes the arc (v, u1) in P and w2 be a
vertex such that the arc (v, w2) follows the arc (w1, v) in P . Since the path does
not contain two consecutive optional arcs, the arcs (u2, v) and (v, w2) differ from
the arcs (w1, v) and (v, u1). We now consider the following two cases depending
on whether the path first goes through (u2, v) and (v, u1) or through (w1, v) and
(v, w2).

1. The path P has the form sAu2vu1Bw1vw2CxDt (i.e., P first goes through
(u2, v) and (v, u1) and only then through (w1, v) and (v, w2)). We trans-
form it to sAu2vw2CxDtu1Bw1. Note that this transformation increases
the number of optional arcs out of t, but it reduces the total number of
optional arcs.

s t
u2

v

w2

x

u1w1

A

B

C

D

s t
u2

v

w2

x

u1w1

A

B

C

D

2. The path P has the form sAw1vw2Bu2vu1CxDt. We then replace the arcs
(w1, v) and (v, u1) by a new arc (w1, u1). As a result we get the path
sAw1u1CxDt and a cycle vw2Bu2v. Recall however that C is a weakly con-
nected component. This means that the new path has at least one vertex in
common with the cycle. Thus we can glue this cycle into this path.

s t
u2

v

w2

x

u1w1

A

B
C

D

s t
u2

v

w2

x

u1w1

A

B
C

D

Clearly both transformations above do not break the path and decrease the total
number of optional arcs.

We now show that P can be transformed so that min{dop
in (P, x), d

op
out(P, x)} ≤

1. Assume for the sake of contradiction that x has in P at least two incoming
and at least two outgoing optional arcs. Let (v, x) and (x,w) be the first optional
incoming and outgoing arcs for x in P . Consider two subcases.

1. P first goes through (v, x) and then through (x,w). Since P has at least
two optional arcs out of x the path P has the form sAvxBxwCxDt. We
transform it to sAvwCxBxDt.

2. P first goes through (x,w). Then it has the form sAxwBvxCt and can be
transformed to sAxCtwBv.

Thus, P satisfies (2).
Finally, we show how to transform P so that (3) holds. Consider a vertex

v ∈ C and assume w.l.o.g. that it has no incoming required arcs (i.e., dre
in(v) = 0).

Assume that P also has an optional arc (v, w). Since P cannot start with an
optional arc it has an arc (u, v) preceding (v, w) and this arc is also optional.
But then two optional arcs (u, v) and (v, w) can be replaced with an arc (u,w).
This again contradicts the assumption that P has the minimal possible number
of optional arcs. The case dre

out(v) = 0 is treated similarly. Thus, P satisfies (3).
We conclude that any rural path with the minimal number of optional arcs

satisfies the properties (2) and (3). The property (1) holds for such a path for a
trivial reason. Thus, any such path is normal. ut

Proof (of Lemma 2). In the following we assume that we know the first vertex
s and the last vertex t of an optimal rural path that we are looking for. Since
the first and the last arc of such a path are both required arcs, enumerating all
such pairs (s, t) can be done in O(n2) time.

To find the required path we modify the graph DG and the set of required
arcs ES as follows:

– Introduce |Σ| new vertices labeled by single symbols and join them to all
other vertices by arcs of weight equal to the length of the suffix of the
two corresponding strings. E.g., w(A, AB) = 1, w(A, BC) = 2, w(BC, A) = 1,
w(BA, A) = 0, w(A, B) = 1.

– For each vertex v of the initial graph DG labeled by AB add fin(v) copies of
the arc (A, AB) and fout(v) copies of (AB, B) to the set of required arcs ES .

Denote the resulting graph by DG′ and the resulting set of required arcs by E′S .
It is worth to note that E′S is a multiset, namely it might contain several copies
of new required arcs (e.g., fin(AB) copies of the arc (A, AB)).

Let C1, . . . , Cp be the weakly connected components of ES and C ′1, . . . , C
′
q

be the weakly connected components of E′S . Clearly q ≤ p and for each Ci there
is C ′j such that Ci ⊆ C ′j .

First we show that the weight of an optimal rural path with configuraion f
in DG is equal to the weight of an optimal rural path in DG′. Indeed, given
an optimal rural path P consistent with f in DG one replaces each its optional
arc (AB, CD) (of weight 2) with three arcs (AB, B), (B, C), (C, CD) (of total weight
0+ 1+ 1 = 2) and each optional arc (AB, BC) (of weight 1) with two arcs (AB, B),

(B, BC) (of total weight 0+ 1 = 1). The resulting path P ′ is a rural path in DG′:
we replaced exactly fout(AB) optional arcs out of the vertex AB with new required
arcs (AB, B). Moreover, this path clearly has exactly the same weight. Conversely,
let P ′ be an optimal rural path in DG′. Just by removing all vertices labeled
by single symbols we get a rural path P consistent with f whose weight is not
greater than the weight of P ′.

Now we show that an optimal rural path in DG′ can be found in polynomial
time. For this, we show that it is enough to solve the problem for each weakly
connected component of E′S separately.

Let P ′ be such an optimal rural path in DG′. Translate it back to a path P
in DG by removing all vertices labeled by single symbols. Let P = A1A2 . . . Ak
where each sequence of vertices Ai lies inside the same weakly connected com-
ponent C ′j of E′S and Ai and Ai+1 belong to different components. Denote by
ui, vi the first and the last vertex of Ai (recall that the path does not contain an
optional arc followed by another optional arc). A simple but crucial observation
is that each arc (vi, ui+1) has weight 2. Indeed, if w(vi, ui+1) = 1 then vi = AB

and ui+1 = BC. Note that (vi, ui+1) is an optional arc since vi and ui+1 belong
to different components of E′S (and hence to different components of ES). This
means that fout(vi) > 0 and fin(ui+1) > 0. But then the arcs (AB, B) and (B, BC)
are required in DG′ and thus vi and ui+1 lie in the same weakly connected
component of E′S .

We would like to show now that there exists an optimal rural path P ′ in
DG′ that goes through each component of E′S separately. For this, we show
that if P ′ enters the same component of E′S more than once then we can reduce
the number of optional arcs between the components by transforming a path
(without increasing the total weight of the path). As before, translate the path
P ′ back to P . Now assume that for some component C ′j , the path P enters C ′j at
least two times, i.e., there are two optional arcs (a1, b1) and (a2, b2) in P such that
b1, b2 ∈ C ′j and a1, a2 6∈ C ′j . Assume that C ′j is not the last component of the path
P (the case when it is the last one is similar). This means that P must also leave
the component C ′j two times. More formally, P contains two optional arcs (b3, a3)
and (b4, a4) where b3, b4 ∈ C ′j and a3, a4 6∈ C ′j . Replace now the arcs (a1, b1) and
(b3, a3) by (b3, b1) and (a1, a3). It is easy to see that such a transformation does
not change the degrees of vertices. To guarantee that the resulting set of arcs
is a single path but not a cycle and a path we note that b1, b2, b3, b4 lie in the
same weakly connected component. Also, the weight of the path is not increased
(since w(a1, b1) = w(b3, a3) = 2 while w(b3, b1), w(a1, a3) ≤ 2).

Thus, to find an optimal rural path in DG′ we can find an optimal path
for each component of E′S separately and then join the found paths arbitrarily
(recall that solving DRPP for a weakly connected component is a polynomial
problem). ut

Proof (of Lemma 3). Let

mindegre(v) = min{dre
in(v), d

re
out(v)}, mindegop(v) = min{fin(v), fout(v)}.

By definition of a normal configuration (see (3)) each component contains at
most one special vertex, i.e., a vertex with mindegop = 1. Recall from the proof
of Lemma 4 that we only need to know which vertex in a configuration is special
(if any) to fully determine the configuration.

We now consider the following two cases.
C is Eulerian. Clearly C contains at most k vertices (and contains exactly k

vertices when it is a simple cycle). Note that if ES does not consist of C only
then C must contain at least one special vertex in any rural path and hence the
number of different normal configurations for C is k. At the same time, if ES
contains C only then an optimal rural path can be found in polynomial time.
C is not Eulerian. By (3), it is enough to show that C contains at most (k−1)

vertices with non-zero mindegre. Then either one of these (k−1) vertices is special
or there are no special vertices — thus, at most k different configurations.

To show that there are at most (k − 1) vertices in C with non-zero mindegre

consider two subcases.

1. By removing directions of the arcs in C we get a simple path on k arcs. Then
C contains (k + 1) vertices but both ends of this path have zero mindegre.

2. Otherwise C contains at most k vertices. If the number of vertices is strictly
smaller than k then we are done. If the number of vertices is equal to k we
find a vertex with zero mindegre. For this, take any vertex in C and start a
path from it. As a result we either arrive to a vertex with zero out-degree (in
this case we are done) or construct a cycle. Since C is weakly connected for
at least one of the vertices of this cycle the sum of in-degree and out-degree
is at least 3. But then C must contain a vertex with in-degree plus out-degree
equal to 1 and we are done again.

ut

Proof (of Lemma 4). Let ES consist of t weakly connected components C1, . . . , Ct,
let also ni be the number of required arcs in Ci (hence n1 + · · · + nt = n). By
Lemma 3 above, for Ci there are at most ni different configurations. Thus, the
total number of normal configurations for ES is at most

∏t
i=1 ni. We show that

this is at most 3n/3 by induction on n. The base case n = 1 is clear. Induction
step:

t∏
i=1

ni = nt ·
t−1∏
i=1

ni ≤ 3
n−nt

3 nt = 3
n−nt

3 +log3 nt .

This does not exceed 3n/3 since log3 nt ≤ nt/3 for any nt ∈ N.
Enumerating all normal configurations is easy: for each weakly connected

component we just need to select a special vertex. Indeed, if a vertex v 6= s, t
is special then min{fin(v), fout(v)} = 1, otherwise min{fin(v), fout(v)} = 0. The
exact values of fin(v) and fout(v) can be then derived from the equality (1). ut

4 Further directions

The natural open question is to solve SCS in less than 2n steps. An apparently
easier problem is to prove an upper bound O∗(2α(r)n) for r-SCS where α(r) < 1
for all r.

Acknowledgments

Research is partially supported by Russian Foundation for Basic Research (12-
01-31057-mol_a), RAS Program for Fundamental Research, Grant of the Pres-
ident of Russian Federation (NSh-3229.2012.1), the Ministry of Education and
Science of the Russian Federation (8216) and Computer Science Club scholar-
ship.

Also, we would like to thank the anonymous reviewers for many valuable
comments that helped us to improve the readability of the paper.

References

1. Bax, E., Franklin, J.: A Finite-Difference Sieve to Count Paths and Cycles by
Length. Inf. Process. Lett. 60, 171–176 (November 1996)

2. Bellman, R.: Dynamic Programming Treatment of the Travelling Salesman Prob-
lem. J. ACM 9, 61–63 (January 1962)

3. Björklund, A.: Determinant Sums for Undirected Hamiltonicity. In: Proceedings
of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
pp. 173–182. FOCS’10, IEEE Computer Society, Washington, DC, USA (2010)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The traveling salesman prob-
lem in bounded degree graphs. ACM Trans. Algorithms 8(2), 18:1–18:13 (Apr
2012)

5. Calabro, C., Impagliazzo, R., Paturi, R.: A Duality between Clause Width and
Clause Density for SAT. In: Proceedings of the 21st Annual IEEE Conference on
Computational Complexity. pp. 252–260. CCC ’06, IEEE Computer Society (2006)

6. Christofides, N., Campos, V., Corberan, A., Mota, E.: An algorithm for the Rural
Postman problem on a directed graph. In: Netflow at Pisa, Mathematical Program-
ming Studies, vol. 26, pp. 155–166. Springer Berlin Heidelberg (1986)

7. Crochemore, M., Cygan, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter,
W., Walen, T.: Algorithms for three versions of the shortest common superstring
problem. In: Proceedings of the 21st annual conference on Combinatorial pattern
matching. pp. 299–309. CPM’10, Springer-Verlag (2010)

8. Dantsin, E., Wolpert, A.: MAX-SAT for formulas with constant clause density
can be solved faster than in O(2n) time. In: Proceedings of the 9th International
Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 4121,
pp. 266–276 (2006)

9. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc Routing Problems, Part II: The Rural
Postman Problem. Operations Research 43(3), 399–414 (1995)

10. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. Journal
of Computer and System Sciences 20(1), 50–58 (1980)

11. Groves, G., van Vuuren, J.: Efficient heuristics for the Rural Postman Problem.
ORiON 21(1), 33–51 (Jun 2005)

12. Held, M., Karp, R.M.: The Traveling-Salesman Problem and Minimum Spanning
Trees. Mathematical Programming 1, 6–25 (1971)

13. Hertli, T.: 3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in
General. In: Foundations of Computer Science (FOCS). pp. 277 –284 (oct 2011)

14. Iwama, K., Nakashima, T.: An Improved Exact Algorithm for Cubic Graph TSP.
In: Computing and Combinatorics, LNCS, vol. 4598, pp. 108–117. Springer Berlin
/ Heidelberg (2007)

15. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation Algorithms
for Asymmetric TSP by Decomposing Directed Regular Multigraphs. J. ACM 52,
602–626 (July 2005)

16. Karp, R.M.: Dynamic Programming Meets the Principle of Inclusion and Exclu-
sion. Operations Research Letters 1(2), 49–51 (1982)

17. Karpinski, M., Schmied, R.: Improved Lower Bounds for the Shortest Superstring
and Related Problems. CoRR abs/1111.5442 (2011)

18. Kohn, S., Gottlieb, A., Kohn, M.: A Generating Function Approach to the Trav-
eling Salesman Problem. In: ACN’77: Proceedings of the 1977 annual conference.
pp. 294–300. New York, NY, USA (1977)

19. Kulikov, A., Kutzkov, K.: New upper bounds for the problem of maximal satisfia-
bility. Discrete Mathematics and Applications 19, 155–172 (2009)

20. Lenstra, J.K., Kan, A.H.G.R.: Complexity of vehicle routing and scheduling prob-
lems. Networks 11(2), 221–227 (1981)

21. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: Proceedings of
the 42nd ACM symposium on Theory of computing. pp. 321–330. STOC ’10, ACM
(2010)

22. Moser, R.A., Scheder, D.: A full derandomization of Schöning’s k-SAT algorithm.
In: Proceedings of the 43rd annual ACM symposium on Theory of computing. pp.
245–252. STOC ’11, ACM (2011)

23. Mucha, M.: Lyndon Words and Short Superstrings. In: Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA’13, Society
for Industrial and Applied Mathematics (2013), to appear

24. Paluch, K., Elbassioni, K., van Zuylen, A.: Simpler Approximation of the Maximum
Asymmetric Traveling Salesman Problem. In: STACS ’12. LIPIcs, vol. 14, pp. 501–
506 (2012)

25. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (Aug 2001)

26. Sweedyk, Z.: 2 1
2
-Approximation Algorithm for Shortest Superstring. SIAM J. Com-

put. 29(3), 954–986 (Dec 1999)
27. Vassilevska, V.: Explicit Inapproximability Bounds for the Shortest Superstring

Problem. In: Mathematical Foundations of Computer Science 2005, LNCS, vol.
3618, pp. 793–800. Springer Berlin / Heidelberg (2005)

28. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theoretical Computer Science 348(2-3), 357–365 (2005)

