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Abstract

It is still not known whether a shortest common superstring (SCS) of n input strings can be found
faster than in O∗(2n) time (O∗(·) suppresses polynomial factors of the input length). In this short note,
we show that for any constant r, SCS for strings of length at most r can be solved in time O∗(2(1−c(r))n)
where c(r) = (1 + 2r2)−1. For this, we introduce so-called hierarchical graphs that allow us to reduce
SCS on strings of length at most r to the directed rural postman problem on a graph with at most
k = (1 − c(r))n weakly connected components. One can then use a recent O∗(2k) time algorithm by
Gutin, Wahlström, and Yeo.

1 Introduction
The shortest common superstring problem (SCS ) asks for a shortest string which contains each of the given
strings s1, . . . , sn as a substring. The problem has many practical applications including genome assembly
and sparse matrix compression. By the r-superstring problem (r-SCS ) we denote the SCS problem for the
special case where all input strings have length at most r. Both SCS over the binary alphabet and r-SCS
(for r ≥ 3) are known to be NP-hard optimization problems [11]. Although approximation algorithms for
SCS are widely studied (currently, the best known approximation ratio is 2 11

23 due to Mucha [21]), it is still
not known whether SCS can be solved exactly in fewer than O∗(2n) steps1. At the same time an easy
reduction of SCS to the traveling salesman problem (TSP) gives an algorithm solving SCS in O∗(2n) time
and polynomial space [17, 16, 1]. In this note, we show that for any constant r, r-SCS can be solved in time
O∗
(

2
(1− 1

2r2+1
)n
)
. The result is achieved by combining a new combinatorial structure called hierarchical

graphs (inspired by de Bruijn graphs) with a recent algorithm solving the directed rural postman problem
in O∗(2k) time where k is the number of weakly connected components by Gutin, Wahlström, and Yeo [13].

Thus, the main result shows that SCS can be solved faster than O∗(2n) when input strings are short.
At the same time the other natural special case of SCS when the alphabet size is small is as hard as the
general case: Vassilevska [23] proved that an O∗(cn)-algorithm for SCS over the binary alphabet implies an
O∗(cn)-algorithm for the general case.

Our initial motivation for studying this problem was the existence of similar algorithms for other very
well-known NP-hard problems — say, the satisfiability problem (SAT), the maximum satisfiability problem
(MAX-SAT), the coloring problem, and the traveling salesman problem. Despite many efforts the best
known algorithms for the general versions of these problems have running time O∗(2n) (n being the number
of variables/vertices). For SAT and MAX-SAT, O∗(2n) is the running time of an exhaustive search. For TSP,
O∗(2n) bound is proved using the dynamic programming method by Bellman [3] and Held and Karp [14].
For coloring, O∗(2n) bound was proved only recently using the inclusion-exclusion principle by Björklund,
Husfeldt and Koivisto [6]. At the same time better upper bounds are known for various special cases of these
problems:
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• SAT: O(1.308n) for 3-SAT [15]; O∗((2− 2/k)n) for k-SAT [22, 20];

• MAX-SAT: O(1.731n) for MAX-2-SAT [24, 18], O(1.109n) for (n, 3)-MAX-2-SAT [19]; O((2− ε)n) for
formulas with constant clause density [10, 19];

• TSP: O(1.2186n) for cubic graphs [7]; O((2−ε)n) for graphs of bounded maximum/average degree [4, 9];

• Coloring: O(1.3289n) for 3-coloring [2]; O((2− ε)n) for graphs of bounded maximum degree [5];

• SCS: O(1.443n) for strings of length 3 [12].

Improving the O∗(2n) bound for all these problems (as well as for SCS) remains a challengeable open problem.

2 General Setting

2.1 Strings and Superstrings
By u A v (u @ v) we denote that u is a suffix (prefix) of v. For strings s and t, by overlap(s, t) we denote
the longest suffix of s that is also a prefix of t. By prefix(s, t) we denote the first |s| − |overlap(s, t)| symbols
of s. Similarly, suffix(s, t) is the last |t| − | overlap(s, t)| symbols of t. By pref(s) and suf(s) we denote,
respectively, the first and the last |s| − 1 symbols of s. The empty string is denoted by ε.

Throughout the paper by S = {s1, . . . , sn} we denote a set of n input strings, each of length at most r =
O(1). We assume that no input string is a substring of another (such a substring can be removed from S
while solving SCS for S on the preprocessing stage). Note that SCS is a permutation problem: to find a
shortest string containing all si’s in a given order one just overlaps the strings in this order. This simple
observation makes many connections to other permutation problems, including different versions of TSP.

2.2 Graphs and Walks
By a path in a directed graph we mean a path with no repeated vertices. We use the term walk for a path
in which vertices may be repeated. A closed walk is a walk whose first vertex is the same as the last.

In the main result of this note we reduce SCS to the directed rural postman problem (DRPP). In this
problem one is given a weighted directed multigraph G = (V,A) together with a set of arcs R ⊆ A and
the goal is to find a shortest closed walk going through all the arcs from R. The arcs R are called required
while all the remaining arcs are called optional. Although DRPP is NP-hard in general case, it can be solved
in polynomial time if the arcs from R form a single weakly connected component [8] (weakly connected
components of a directed graph are connected components in this graph with all directed arcs replaced by
undirected edges). We use also the following recent result by Gutin, Wahlström and Yeo [13].

Theorem 1. Let G = (V,A) be a weighted directed multigraph, R ⊆ A be a subset of arcs, l = poly(|V |),
then there exists a randomized algorithm with false negatives checking whether the length of a shortest closed
walk going through all the arcs from R is at most l in time O∗(2k), where k is the number of weakly connected
components in the subgraph of G induced by R.

3 Hierarchical Graphs
Definition 1 (hierarchical graph). A hierarchical graph HGS = (V,A) of S is a weighted directed graph
defined as follows:

• The set of vertices V consists of all prefixes and suffixes (including the empty string ε) of the strings
from S.

• For two such strings u, v ∈ V , (u, v) ∈ A when either

2



– u is a prefix of v of length |v|− 1 (i.e., u = pref(v)); in this case the weight w(u, v) = 1 and (u, v)
is called an up-arc, or

– v is a suffix of u of length |u| − 1 (i.e., v = suf(u)); in this case the weight w(u, v) = 0 and (u, v)
is called a down-arc.

Figure 1 gives an example of the hierarchical graph as well as shows that the terminology of up- and
down-arcs comes from placing all the strings of the same length at the same layer where the i-th layer
contains strings of length i. For an i-th layer the (i− 1)-th layer is called previous while the (i+ 1)-th layer
is called next. By an up-path (resp., down-path) we denote a path containing up-arcs (down-arcs) only. A
path d→ db→ dbb on Fig. 1 is an example of an up-path, a path abb→ bb→ b is a down-path.

What we are looking for in this graph is a shortest walk from ε to ε going through all the vertices from S.
It is not difficult to see that the length of a walk from ε to ε equals the length of the string spelled by this
walk. This is just because each arc going up has weight 1 and adds one symbol to the current string. For
example, in the graph of Fig. 1 a walk ε → b → ba → bab → ab → abc → abca → bca → ca → a → ε has
length 5 and spells a string babca of length 5 in a natural way.

abba

babdbb cab aac

abca

bba abb abc bca

db bb ba ab ca aa ac

d b a c

ε0

1

2

3

4

Figure 1: The hierarchical graph for S = {abba, abca, dbb, bab, cab, aac}. The strings from S are given in
rectangles.

Note that each string from S has exactly one incoming and one outgoing arc in HGS . Denote the set of
all these arcs by R. Any optimal walk must go through all the arcs of R so we call these arcs required (see
Fig. 2(a)). Formally, R = {(pref(s), s) : s ∈ S}∪{(s, suf(s)) : s ∈ S}. The resulting problem is an instance of
the directed rural postman problem with the only exception: optimal walk must go through ε. To guarantee
that a rural walk starts in ε and ends in ε we add a self-loop on ε of weight 0 to the set of required arcs.

For any two vertices u and v of this graph such that none of them is a substring of the other one there
is a natural path from u to v: it first goes down from u to overlap(u, v) and then goes up to v (see Fig. 3).
We call a rural walk normal if between visiting two consecutive vertices from S it alternates directions only
once (i.e., any subpath between two consecutive vertices from S is a natural path). It is easy to see that
there always exists a normal optimal walk (recall that any s ∈ S is not a substring of any other s′ ∈ S).

If all overlaps of a particular string s ∈ S (with other strings from S) are short we know for sure that
any optimal rural walk has a long down-path out of s. Returning to the example of Fig. 1, it is easy to see
that no string from S starts from bb. This means that any optimal rural walk in HGS must go down from
dbb to at least b. We formalize this intuition in the definition below.

Definition 2 (extended set of required arcs). For a string s ∈ S, denote by maxprefS(s) (resp., maxsufS(s))
the longest prefix (resp., suffix) of s which is also a suffix (prefix) of some other string s′ ∈ S. Clearly,

|maxprefS(s)| = max{| overlap(s′, s)| : s′ ∈ S \ {s}} ,
|maxsufS(s)| = max{| overlap(s, s′)| : s′ ∈ S \ {s}} .
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abba

babdbb cab aac

abca

bba abb abc bca

db bb ba ab ca aa ac

d b a c

ε(a)

abba

babdbb cab aac

abca

bba abb abc bca

db bb ba ab ca aa ac

d b a c

ε(b)

Figure 2: (a) The set R of required arcs is shown in bold. (b) An optimal superstring dbbabcabbaac defines
a walk of length 12 in HG. Note that both the superstring and the optimal walk are defined by a permutation
σ = (dbb, bab, abca, cab, abba, aac). The extended set of required arcs ER is shown in bold.

sij sij+1

overlap(sij , sij+1
)

Figure 3: A natural path between vertices sij and sij+1
.

Then an extended set of required arcs ER ⊆ E(HGS) is the set of required arcs R plus the following set
of arcs:

• the up-path from maxprefS(s) to s: all arcs (u, v) where u, v @ s, |u| = |v|−1 and |u| ≥ |maxprefS(s)|;

• the down-path from s to maxsufS(s): all arcs (u, v) where u, v A s, |u| = |v|+1 and |v| ≥ |maxsufS(s)|;

• the loop (ε, ε) of weight 0.

E.g., for S = {abba, abca, dbb, bab, cab, aac}, maxprefS(abca) = ab, maxsufS(abca) = ca,
maxprefS(dbb) = ε, maxsufS(dbb) = b.

Lemma 1. The length of an optimal superstring of a set of strings S is equal to the length of an optimal
rural postman closed walk in HGS where the required arcs are ER.

Proof. Consider an optimal rural closed walk w and represent it as a sequence of vertices v0 = ε, v1, . . . , vk =
ε. This walk spells a string s in a natural way: initially, set s = ε and start traversing the walk; each time
when it goes up (i.e., |vi| = |vi−1|+1) add the corresponding symbol to s. This way we preserve the following
two invariants:

• the length of the current string equals the length of the traversed subwalk;

• when at a vertex vi, the current string s contains vi as a suffix.

Since w goes through all the strings from S the resulting string s is a superstring of S. Clearly, the length
of s equals the length of w. Thus, the length of an optimal superstring does not exceed the length of an
optimal rural walk.
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For the reverse direction, consider a superstring s for S. It defines an order si1 , . . . , sin of the strings
from S. Consider now the following normal rural walk: it starts at ε, goes up to si1 , then for all j = 1, . . . , n−1
it goes down from sij to overlap(sij , sij+1

) and then goes up to sij+1
, then it goes down from sin to ε, and

finally it goes through the loop (ε, ε). It is easy to see that the length of the resulting closed walk equals the
length of s. It is also a valid rural postman walk since for each string sij

| overlap(sij−1
, sij )| ≤ |maxprefS(sij )| ,

| overlap(sij , sij+1
)| ≤ |maxsufS(sij )| .

Hence the walk necessarily traverses all the arcs from ER. Thus, the length of an optimal rural closed walk
is not greater then the length of an optimal superstring.

Definition 3 (bottom vertex). A vertex v in HGS is called a bottom vertex if

{(u, v) ∈ ER : |u| = |v| − 1} = {(v, u) ∈ ER : |u| = |v| − 1} = ∅ and

|{(u, v) ∈ ER : |u| = |v|+ 1}|+ |{(v, u) ∈ ER : |u| = |v|+ 1}| ≥ 1 .

In other words, v is not connected to the previous (i.e., (|v|−1)-th) layer by the arcs of ER, but is connected
to the next (i.e., (|v|+ 1)-th) layer.

Lemma 2. Vb = {maxprefS(s),maxsufS(s) : s ∈ S}.

Proof. Clearly, any bottom vertex is either maxprefS(s) or maxsufS(s) for some s ∈ S. For the other
direction, consider a vertex v = maxsufS(s) and assume that it has an incoming up-arc (u, v) ∈ ER. This
arc must lie on an up-path from maxprefS(t) to t for some t ∈ S. But then v @ t and v A s and v is strictly
longer than maxprefS(t) which contradicts to the definition of maxprefS(t). By a similar argument one can
show that v does not have outgoing down-arcs. This shows that maxsufS(s) is indeed a bottom vertex. By
the same reason, maxprefS(s) is also a bottom vertex.

E.g., for the set S from Fig. 1, {maxprefS(s) : s ∈ S} = {ε, ba, ab, ca, a} and {maxsufS(s) : s ∈ S} =
{b, ab, ca, ba, c}.

Definition 4 (good vertex). A bottom vertex is called good if it is not a substring of any other bottom
vertex. The set of all good vertices is denoted by Vg.

In Fig. 2(b) the bottom vertices are ε, b, ba, ab, ca, a, c. Among them, ba, ab, and ca are good.
Note that a good vertex t is a meeting point of a down-path from s ∈ S to t = maxsufS(s) and an

up-path from t = maxprefS(s′) to s′ ∈ S. Indeed, since a good vertex is a bottom vertex, it has either a
down-path s  t or an up-path t  s′ in ER. Consider the case that the path s  t is in ER (the other
case is symmetric). If the entire path t  s′ = {t = v0 → v1 → . . . → vk = s′} is in ER then we are
done. Assume, to the contrary, that there is a vertex vi in the path such that (vi−1, vi) 6∈ ER while the path
vi  s′ ∈ ER. In order to get a contradiction, we want to show that vi is a bottom vertex (this cannot be
the case since t is a substring of vi while by definition t is not a substring of any bottom vertex). Indeed,
there is an arc from vi to a vertex vi+1 from the next layer, but there are no connections to the previous
layer:

• the up-arc (vi−1 = pref(vi), vi) 6∈ ER by the assumption;

• the down-arc (vi, suf(vi)) 6∈ ER because any down-path from an input string to vi stops at vi or earlier
(more formally, if (vi, suf(vi)) ∈ ER then there exists an input string s0 ∈ S such that |maxsufS(s0)| ≤
| suf(vi)| = |vi| − 1; at the same time |maxsufS(s0)| ≥ | overlap(s0, s

′)| ≥ |vi|, a contradiction).

Lemma 3. r2|Vg| ≥ |Vb|.
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Proof. Recall that a bottom vertex v is not good iff there is another bottom vertex u such that v is a
substring of u. This allows to define recursively the following mapping f : Vb → Vg: if v ∈ Vb is good then
f(v) = v; otherwise take a vertex u ∈ Vb such that v is a substring of u and set f(v) = f(u) (this is feasible
since |u| > |v|). I.e., we go up from v till we reach a good vertex. Now note that for any v ∈ Vb, v is a
substring of f(v). Since each vertex has at most r2 substrings we have r2|Vg| ≥ |Vb|.

Theorem 2. The set ER of extended required arcs consists of at most (1 − 1
2r2+1 )n weakly connected

components.

Proof. Let k be the total number of weakly connected components andmi be the number of weakly connected
components that contain exactly i strings from S. Then

n∑
i=1

mi = k and
n∑

i=1

imi = n .

Since only bottom vertices have no connections to the previous layer, each weakly connected component
contains at least one bottom vertex, hence k ≤ |Vb|.

Also, each weakly connected component containing i input strings contains at most i good vertices.
Indeed, a good vertex t is a meeting point of a down-path from s ∈ S and an up-path to s′ ∈ S. At the
same time any s ∈ S produces no more than two good vertices (one corresponding to maxprefS(s) and one
corresponding to maxsufS(s); recall Lemma 2). Hence

∑n
i=2 imi ≥ |Vg| (clearly a component with only one

input string does not contain good vertices at all).
Using these estimates and applying Lemma 3 we get

n =

n∑
i=1

imi = k +

n∑
i=1

(i− 1)mi ≥ k +

n∑
i=2

imi

2
≥ k +

|Vg|
2
≥ k +

|Vb|
2r2
≥ k +

k

2r2
= k

(
1 +

1

2r2

)
.

4 Main Result

Theorem 3. There exists a randomized algorithm solving r-SCS on n strings in time O∗
(

2

(
1− 1

2r2+1

)
n
)
.

Proof. Lemma 1 tells that to find a shortest superstring for S it is enough to find a shortest rural postman
closed walk in HGS for a set of required arcs ER. Theorem 2 guarantees that the number k of weakly
connected components of ER is at most (1− 1

1+2r2 )n. Finally, Theorem 1 shows that one can check whether
such a graph contains a closed walk of total length l = poly(|V |) going through all required arcs in time
O∗(2k). In our case l is indeed poly(|V |) since the optimal length of a superstring of S does not exceed rn.

5 Further Directions
The natural next step is to solve the general version SCS in O∗((2 − ε)n). It would also be interesting to
show hardness of SCS (under Strong Exponential Time Hypothesis or, e.g., by reducing TSP with n vertices
to SCS with n strings).
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[22] Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart. Algorith-
mica, 32(4):615–623, 2002.

[23] Virginia Vassilevska. Explicit inapproximability bounds for the shortest superstring problem. In Math-
ematical Foundations of Computer Science 2005, volume 3618 of LNCS, pages 793–800. Springer Berlin
/ Heidelberg, 2005.

[24] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical
Computer Science, 348(2-3):357–365, 2005.

8


