Problem 1 (Rigidity upper bound). Let \mathbb{F} be a field, and let a matrix $A \in \mathbb{F}^{n \times n}$ be written as

$$A = \begin{pmatrix} B & A_{12} \\ A_{21} & C \end{pmatrix} ,$$

where $B \in \mathbb{F}^{r \times r}, A_{12} \in \mathbb{F}^{r \times (n-r)}, A_{21} \in \mathbb{F}^{(n-r) \times r}, C \in \mathbb{F}^{(n-r) \times (n-r)}.$

Prove that if rank(B) = r and $C = A_{21}B^{-1}A_{12}$, then

$$\operatorname{rank}(A) = \operatorname{rank}(B) = r$$
.

Problem 2 (Linear codes). Prove that for every $\delta < 1/2$ and $\varepsilon > 0$, there exists a subspace $C \subseteq \mathbb{F}_2^n$ of dimension $k \ge n(1 - H(\delta) - \varepsilon)$ such that for all non-zero $x \in C$: $||x||_1 \ge \delta n$. Here H(p) denotes the binary entropy function

$$H(p) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}.$$

In order to prove this, consider a greedy algorithm that sequentially adds k basis vectors which are δn -far from all the vectors in the subspace. Use the following upper bound to prove that the greedy algorithm always succeeds:

$$\sum_{i=0}^{\delta n} \binom{n}{i} \le 2^{nH(\delta)} \,.$$

Problem 3 (Cauchy determinant). Let \mathbb{F} be a field containing at least 2n distinct elements denoted by x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n . Let $A \in \mathbb{F}^{n \times n}$ be a Cauchy matrix: $A_{ij} = \frac{1}{(x_i - y_j)}$. Prove that

$$\det(A) = \frac{\prod_{1 \le i < j \le n} (x_j - x_i)(y_i - y_j)}{\prod_{1 \le i, j \le n} (x_i - y_j)} \,.$$

Conclude that $det(A) \neq 0$.

Problem 4 (Hadamard is not rigid for high rank). Let $N = 2^n$, and $H_N \in \mathbb{R}^{N \times N}$ be the Walsh-Hadamard matrix defined as follows.

$$H_{2} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},$$
$$H_{N} = \begin{pmatrix} H_{N/2} & H_{N/2} \\ H_{N/2} & -H_{N/2} \end{pmatrix}$$

In particular, $H_N = H_2^{\otimes n}$, where \otimes denotes the Kronecker product.

In this exercise, we will prove that H_N has low rigidity for rank $r \ge N/2$. Namely, $\mathcal{R}_{H_N}^{\mathbb{R}}(N/2) \le N$.

- Let $A \in \mathbb{R}^{N \times N}$ have eigenvalues $\lambda_1, \ldots, \lambda_N$. Find the eigenvalues of $A c \cdot I_N$ for $c \in \mathbb{R}$.
- Prove that if $A \in \mathbb{R}^{N \times N}$ has an eigenvalue of multiplicity k, then

$$\mathcal{R}^{\mathbb{R}}_A(N-k) \le N \,.$$

• Finally, prove that

$$\mathcal{R}^{\mathbb{R}}_{H_N}(N/2) \le N$$

Problem 5 (Matrix Norms). Let $M \in \mathbb{C}^{m \times n}$ be a matrix, $k = \min(m, n)$, and $r = \operatorname{rank}(M)$. Let

$$\sigma_1(M) \ge \ldots \ge \sigma_r(M) > \sigma_{r+1}(M) = \ldots = \sigma_k(M) = 0$$

be the singular values of M. Let $||M||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |M_{i,j}|^2\right)^{1/2}$ and $||M||_2 = \sup_{x\neq 0} \frac{||Mx||_2}{||x||_2}$ be the Frobenius and spectral norms of M. Prove that

- the Frobenius norm is the root sum of squares of the singular values: $||M||_F = \left(\sum_{i=1}^k \sigma_i^2(M)\right)^{1/2}$;
- the spectral norm is the largest singular value: $||M||_2 = \sigma_1(M)$;
- if M' is a submatrix of M, then $\sigma_i(M') \leq \sigma_i(M)$. In particular, $\|M'\|_2 \leq \|M\|_2$.