
These lecture notes are based on a manuscript of a book on matrix rigidity by Chi-Ning Chou and
Sasha Golovnev.

Chapter 1

Introduction

Lecture 11.1 Definitions and examples
One of the main questions in computational complexity is that of proving lower bounds on the size of
Boolean circuits computing explicitly given functions. While most Boolean functions of n inputs require
circuits of size 2n/n [Sha49a, Lup59a], we can only prove small linear lower bounds for explicitly defined
functions [LR01, IM02, Blu83, DK11, FGHK16]. 1

The same question remains open for linear circuits computing linear Boolean functions. Since any linear
function with one output can be computed by a circuit of size at most n, we study linear functions with n
inputs and n outputs. A random linear map with n outputs requires circuits of size n2/ log n [Lup56], but
the best known lower bound for an explicit linear map is only 3n− o(n) [Cha94a].

The notion of matrix rigidity was introduced by Valiant [Val77] as a tool for proving lower bounds against
linear circuits. (A related notion of separability was introduced by Grigoriev [Gri76].)

We will use the following notation. A matrix A is called s-sparse, if the number of non-zero entries in A
is at most s. We will use In, 0n and Jn to denote the identity matrix, zero matrix, and all-ones matrix of
size n× n. For a matrix A ∈ Fn×n, by ‖A‖0 we denote the number of non-zero entries in A.
Definition 1.1 (Rigidity). Let F be a field, A ∈ Fn×n be a matrix, and 0 ≤ r ≤ n. The rigidity of A over F,
denoted by RF

A(r), is the Hamming distance between A and the set of matrices of rank at most r. Formally,

RF
A(r) := min

rank(A+C)≤r
‖C‖0 .

In other words, a matrix A has rigidity RF
A(r) ≥ s if and only if A ∈ Fn×n cannot be written as a sum

A = S + L ,

where S ∈ Fn×n is (s− 1)-sparse matrix, and L ∈ Fn×n is low-rank: rank(L) ≤ r.
Valiant [Val77] proved that any linear map A ∈ Fn×n computed by a linear circuit (over a field F) of depth

O(log n) and size o(n log log n) has rigidity at most RF
A(εn) ≤ n1+δ for every constant ε, δ > 0. Therefore,

an explicit matrix of higher rigidity would give us a super-linear lower bound against linear circuits of
logarithmic depth. Despite more than 40 years of research, the problem of proving super-linear lower bounds
for such circuits remains open.

Let us now see the rigidity of a few specific matrices.

• If A ∈ Fn×n has rank rank(A) = k over the field F, then RF
A(r) = 0 for every r ≥ k. Indeed, A can

be written as a sum of A and 0n, where rank(A) ≤ r and 0n is 0-sparse. Similarly, an s-sparse matrix
A ∈ Fn×n has rigidity RF

A(r) ≤ s for any value of r.
1Here by explicit functions we mean functions computable in time polynomial in n. We will later discuss the notion of

explicitness in greater detail.
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• For any 0 ≤ r ≤ n, RF
In

(r) = n− r. Indeed, if we change n− r ones of In to zeros, then the resulting
matrix has rank r, which implies that RF

In
(r) ≤ n−r. On the other hand, for any (n−r)-sparse matrix

B, from subadditivity of rank,

rank(In +B) ≥ rank(In)− rank(B) ≥ n− (n− r) = r ,

which gives us that RF
In

(r) ≥ n− r.

• Let n be a multiple of 2r, and let Mn ∈ Fn×n be a matrix consisting of matrices I2r stacked together
side by side:

Mn =

I2r · · · I2r
...

. . .
...

I2r · · · I2r

 .

We will show that this matrix has rigidity RF
A(r) = n2

4r .

Theorem 1.2 ([Mid05]). For any field F, and any n divisible by 1 ≤ 2r ≤ n,

RF
Mn

(r) =
n2

4r
.

Proof of Theorem 1.2. Mn consists of n2

4r2 copies of the identity matrix I2r. In order to drop the rank
of A to r, the rank of each copy of I2r must be dropped to r. From the previous example we know that
in order to decrease the rank of I2r to r, one needs to change at least r elements. Thus, n2

4r2 · r = n2

4r

entries of Mn must be changed. Note that this bounds is tight, i.e., RF
Mn

(r) = n2

4r .

The bound of Theorem 1.2 easily generalizes to all values r ≤ n/2 with a loss of a multiplicative factor
of 2. This theorem was proven by Midrijānis [Mid05], and it gives a simple matrix with rigidityRF

Mn
(r) ≥ n2

8r .
We will see later that there exist matrices with much higher rigidity Ω̃

(
(n− r)2

)
. Embarrassingly, the

best known lower bound for an explicit matrix improves on the n2

8r bound only by a logarithmic factor.

1.2 Circuit Complexity
A circuit corresponds to a simple straight line program where every instruction performs a binary operation
on two operands, each of which is either an input or the result of a previous instruction. The structure
of this program is extremely simple: no loops, no conditional statements. Still, we know no functions in
P (or even NP, or even ENP) that requires even 3.1n binary instructions (“size”) to compute on inputs of
length n. This is in sharp contrast with the fact that it is easy to non-constructively find such functions:
simple counting arguments show a random function on n variables has circuit size Ω(2n/n) with probability
1− o(1) [Sha49b, Lup59b].

For small-depth circuits we know several strong lower bounds. (Note that when working with circuits
of constant depth, we do not pose bounds on the fan-ins of the gates.) Depth-2 circuits (after a simple
normalization) are just CNFs or DNFs. It is easy to see that the parity function ⊕n of n inputs requires
CNFs and DNFs of size Ω(2n). For depth-d circuits, we know a lower bound of 2Ω(n(1/(d−1))) [Hås86, HJP93,
PPZ97, Bop97, PPSZ05, MW17]. Thus, for depth d = o(log n/ log log n) we have non-trivial lower bounds
even if the fan-ins of the gates are unbounded. For circuits with fan-in 2, we known functions which cannot
be computed by circuits of depth 1.99 log n [Nec66]. Thus, a problem on the frontier is

Problem 1.3. Prove a lower bound of 10n against circuits of depth 10 log n.
More generally, a lower bound of ω(n) against circuits of depth O(log n).

Super-linear lower bounds are not known even for linear circuits, i.e., circuits consisting of only gates
computing linear combinations of their two inputs. Note that every linear function with one output has a
circuit of size n− 1 (and depth log n). For linear circuits, we consider linear transformations, multi-output
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functions of the form f(x) = Ax where A ∈ Fn×n. For a random matrix A ∈ {0, 1}n×n, the size of the
smallest linear circuit computing Ax is Θ(n2/ log n) [Lup56] with probability 1 − o(1), but for explicitly-
constructed matrices the strongest known lower bound is 3n − o(n) [Cha94b]. This leads us to another
problem on the frontier:

Problem 1.4. Prove a lower bound of ω(n) against linear circuits of depth O(log n).

Formally, Problem 1.3 and Problem 1.4 are incomparable, as in the linear case we study a weaker
computational model (which makes it easier to prove lower bounds), but are limited to proving lower bounds
for a smaller class of problem (which makes it harder to prove lower bounds).

1.3 Circuits and Rigidity
In this section, we will present a seminal result of Valiant [Val77] showing that rigid matrices require log-depth
circuits of super-linear size. We start with the definition of linear circuits.
Definition 1.5 (Linear circuits). Let F be a field and n ∈ N. A circuit C with n inputs and n outputs is a
directed acyclic graph where n vertices have fan-in zero and are labeled by the inputs, all other vertices have
fan-in two and are labeled with affine functions (over F) of their two inputs, n of these vertices are labeled as
outputs. For every fixed input, the value at each node is computed by applying the corresponding functions.
Such a circuit C naturally defines a linear map f : Fn → Fn, and the corresponding matrix A ∈ Fn×n such
that f(x) = Ax.

The depth d(C) of a circuit C is the length of the longest path in the circuit. The size s(C) of C is defined
as the number of vertices in C.

The following theorem shows a connection between lower bounds for linear circuits and matrix rigidity.

Theorem 1.6. Let F be a field, and A ∈ Fn×n be a family of matrices for n ∈ N. If RF
A(εn) > n1+δ for

constant ε, δ > 0, then any O(log n)-depth linear circuit computing x→ Ax must be of size Ω(n · log log n).

The proof of Theorem 1.6 repeatedly uses the following beautiful graph theoretic lemma due to Erdös,
Graham, and Szemerédi [EGS76]: If G is a directed acyclic graph with s edges and of depth d, then there is
a set of s/ log d edges whose removal decreases the depth of G by a factor of two. We will follow the proof
of this lemma from [Vio09].

Lemma 1.7 ([EGS76]). Let G be an acyclic digraph with s edges and of depth d = 2k. There exists a set of
s/ log d edges in G such that after their removal, the longest path in G has length at most d/2.

Proof of Lemma 1.7. For ease of exposition, we follow [Vio09] and define a depth function. Let G = (V,E)
be an acyclic digraph. We say that D : V → {0, 1, . . . , d} is a depth function for G if for any (a, b) ∈ E,
D(a) < D(b). It is not difficult to see that G has depth at most d if and only if there exists a depth function
D : V → {0, 1, . . . , d− 1} for G.

We start with G of depth at most d = 2k, and its depth function D : V → {0, 1, . . . , 2k}. Now, consider
the following partition of E using the depth function D. For each i ∈ [k], define

Ei = {(a, b) ∈ E : the most significant bit where D(a), D(b) differ is the ith bit}.

As {Ei}i∈[k] is a partition of E, by the averaging argument, there exists i∗ ∈ [k] such that

|Ei∗ | ≤
|E|
k
≤ |E|

log d
.

Now, it suffices to show that the depth of G′ = (V,E′), where E′ = E\Ei∗ , is at most 2k−1. This can be
shown by exhibiting a depth function D′ : V → {0, 1, . . . , 2k−1− 1} for G′. The following shows that we can
take D′(v) to be D(v) without the i∗th bit.

Consider an edge (a, b) ∈ E′. Since (a, b) ∈ E, D(a) < D(b). In particular, there exists i ∈ [k] such that
the most significant bit where D(a) and D(b) differ is i. Since (a, b) ∈ E′, the edge (a, b) was not removed,
so i 6= i∗. Therefore, after removing the bit i∗, this bit i is still the most significant bit where D′(a) and
D′(b) differ. This implies that D′(a) < D′(b), and that D′ : V → {0, 1, . . . , 2k−1 − 1} is a depth function
for G′.
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x1 x2 . . . xn−1 xn

p1 p2 . . . ps−1 pεn

q1 q2 . . . qn−1 qn

unbounded

nδ nδ

Figure 1.1: In order to compute the values of the outputs of the circuit C, first we precompute the values
of εn removed edges (or vertices V ′), and store them in variables pi. Now each output qj of the circuit C
can be computed from nδ inputs and precomputed bits. In particular, A = BM + C, where C encodes
the dependence of the outputs qi on the inputs xj ; B encodes the dependence of qi on pj ; M encodes the
dependence of pi on xj . Since C is sparse, and BM is low rank, the matrix A is not rigid.

Lecture 2Now we finish the proof of Theorem 1.6.

Proof of Theorem 1.6. We will show that for every constant cd ≥ 2, every circuit of depth at most cd log n
computing x → Ax must be of size at least csn log log n for a constant cs = ε

log cd+log 1/δ . Suppose, to the
contrary, that there is a linear circuit C of size s = csn log log n and depth d = cd log n = 2k that computes
x→ Ax. Let G be the underlying acyclic digraph of C.

First, we apply Lemma 1.7 to G t times, and get a graph G′ such that (i) only

s ·
(

1

log d
+

1

log d− 1
+ · · · 1

log d− (t− 1)

)
≤ st

log d− (t− 1)

edges are removed from G and (ii) the longest path in G′ is of length at most d′ ≤ d/2t.
By setting t = log cd + log 1/δ, the longest path in G′ has length ≤ d/2t = δ log n, and the number of

removed edges is at most
st

log d− (t− 1)
=

st

log d/2
≤ tcsn log log n

log log n
= εn .

Now, let E be the set of removed edges and V ′ be the set of tail vertices of the edges from E. Since all
paths in G′ are no longer than d′ and all in-degrees are at most 2, every output vertex in G′ is now connected
to at most 2d

′
input variables. Therefore, every output is a (linear) function of at most 2d

′
inputs and the

functions computed at the removed edges (or the vertices V ′).
More specifically, let Ai be the ith row of A, i.e., the linear form computed by the ith output vertex of

G. Then Ai can be written as the following sum

Ai =
∑

j∈[|V ′|]

bijvj + ci

where vj is the linear form computed by the jth element in V ′ and ci is the linear form computed by the ith

output vertex in G′. Note that since ci only depends on at most 2d
′
input variables.

Therefore, the matrix A can be written as follows.

A = BM + C

where B ∈ Fn×|V ′| consists of the coefficients bij , rows of M ∈ F|V ′|×n compute linear forms of vertices
from V ′, and C ∈ Fn×n is a row sparse matrix where the number of non-zero entries in each row is at most
2d
′

= nδ.
The above argument gives us that R̃F

A(|V ′|) = R̃F
A(εn) ≤ nδ, which contradicts the assumption on the

rigidity of A.
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1.4 Existence of Rigid Matrices
In this section, we will show that for any field F, most of the n×n matrices have the highest possible rigidity
for any rank parameter r.

It turns out that for every matrix A and field F, there is a simple upper bound RF
A(r) ≤ (n − r)2.

Valiant [Val77] showed that this upper bound is essentially tight for a random matrix. First, we give a proof
of the upper bound.

Theorem 1.8 (Simple upper bound). For any field F, matrix A ∈ Fn×n, and integer 0 ≤ r ≤ n, we have
that

RF
A(r) ≤ (n− r)2 .

Proof of Theorem 1.8. If rank(A) ≤ r, then RF
A(r) = 0 ≤ (n − r)2. Thus, it suffices to focus on the case

where there is an r × r full-rank submatrix B ∈ Fr×r of A. Without loss of generality, assume that B is
located in the top left corner of A:

A =

(
B A12

A21 A22

)
, (1.9)

where A12 ∈ Fr×(n−r), A21 ∈ F(n−r)×r, A22 ∈ F(n−r)×(n−r). In order to prove that RF
A(r) ≤ (n− r)2, we will

show that it is possible to change the entries in A22 ∈ F(n−r)×(n−r) and reduce the rank of A to r. Since
B has full rank, each row in A21 is a unique linear combination of the rows in B. Thus, we can change the
entries in A22 according to these linear combinations so that each row in A is now a linear combination of
the first r rows, i.e., the rank of the modified matrix is at most r. 2

Note that the above algorithm only modifies the entries of A22 ∈ F(n−r)×(n−r). Thus, at most (n − r)2

many entries in A are changed, and RF
A(r) ≤ (n− r)2.

We will now prove that almost all matrices have rigidity (n− r)2.

Theorem 1.10 (Valiant’s lower bounds [Val77]). For any field F,

• if F is infinite, then for all 0 ≤ r ≤ n there exists a matrix M ∈ Fn×n of rigidity

RF
M (r) = (n− r)2 ;

• if F is finite, then for all 0 ≤ r ≤ n− Ω(
√
n) there exists a matrix M ∈ Fn×n of rigidity

RF
M (r) = Ω

(
(n− r)2/ log n

)
.

Proof of Theorem 1.10. Let Mr,s = {A ∈ Fn×n : RF
A(r) ≤ s} be the set of all matrices of r-rigidity at most

s. We will show that the n2 elements of matrices from Mr,s lie in the union of images of a few rational maps
from Fn2+s−(n−r)2 to Fn2

. Intuitively, since for s� (n− r)2 these images cover only a negligible fraction of
all matrices in Fn×n, we will have that “most” of the matrices are rigid.

For every matrix M ∈ Mr,s, there exists an s-sparse matrix S ∈ Fn×n and a low-rank matrix L ∈
Fn×n, rank(L) = k ≤ r such that M = S + L. After one of at most

(
n
k

)2 permutations of rows and columns,
we have the first k rows and columns of L linearly independent. The same permutations of rows and columns
applied to M , give us a matrix of the form (

M11 M12

M21 M22

)
, (1.11)

where M11 ∈ Fk×k,M12 ∈ Fk×(n−k),M21 ∈ F(n−k)×k,M22 ∈ F(n−k)×(n−k). Moreover, for at least one out of(
n2

s

)
choices of s entries of the matrix, we have that a change in those entries makes rank(M11) = rank(M).

Similarly to Theorem 1.8, this implies that all entries of M22 are then rational maps of the entries in
2Formally, we set A22 = A21B−1A12.
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M11,M12,M21. That is, the n2 entries of any matrixM ∈Mr,s lie in the union of at most
(
n
r

)2 ·(n2

s

)
rational

maps from Fs+n2−(n−r)2 to Fn2

.
When F is infinite and s < (n−r)2, every matrix inMr,s is in the union of finitely many images of rational

functions from Fn2−1 to Fn2

. Since n2 rational functions of n2−1 variables are algebraically dependent (see,
e.g., [For92]), a finite union of such images is the set of roots of a non-zero polynomial. This implies that
some matrices from Fn×n do not belong to Mr,s.

When |F| = q <∞ is finite, each M ∈Mr,s is uniquely specified by one out of
(
n
r

)2 permutations, one of(
n2

s

)
choices of s elements, values of those s elements, and values of the entries in M11,M12,M21. Thus, the

size of Mr,s is bounded from above by(
n

r

)2

·
(
n2

s

)
· qs · qn

2−(n−r)2 ≤ 22n+2s logn · qn
2+s−(n−r)2 ,

which is at most o(qn
2

) for every s < (n− r)2/Ω(logq n) and r = n− Ω(
√
n).

Note that the proof of the Ω̃
(
(n− r)2

)
lower bound in Theorem 1.10 does not provide a description

of a rigid matrix, it merely proves its existence. This brings us to a discussion on explicitness of matrix
constructions.

Lecture 3

1.5 On explicitness
In this section we will see two constructions of very rigid matrices. The main drawback of these constructions
is that we do not know a polynomial time algorithm outputting the entries of these matrices.

First we show that a matrix consisting of algebraically independent elements has maximal rigidity. (One
simple way to construct n2 algebraically independent elements is given by Lindemann-Weierstrass Theorem.)

Lemma 1.12. Let M ∈ Rn×n be a matrix where all n2 elements are algebraically independent over Q. Then
for every 0 ≤ r ≤ n,

RR
M (r) = (n− r)2 .

Proof. Let s = (n − r)2 − 1. Assume, for the sake of contradiction, that RR
M (r) ≤ s. Then there exists an

s-sparse matrix S, such that rank(M + S) ≤ r. Similarly to Theorem 1.10, the n2 entries of M are rational
functions of the s non-zero entries of S and at most n2 − (n − r)2 entries of M . Therefore, polymonials of
at most s + n2 − (n − r)2 < n2 elements generate all n2 entries of M , which contradicts the assumption
on algebraic independence of the elements of M . This implies that RR

M (r) ≥ (n − r)2. On the other hand,
Theorem 1.8 gives us that RR

M (r) ≤ (n− r)2.

While the construction of Lemma 1.12 has optimal rigidity, and each entry of such a matrix may have a
very succinct mathematical description, there is no efficient algorithm outputting all digits of these entries.
Thus, we will require that explicit constructions of matrices have polynomial-time algorithms outputting
their entries.

Another non-explicit construction of rigid matrices is via an exponential-time algorithm. Suppose that
we have a fixed finite field F of size |F| = q. Then there is a trivial algorithm which runs in time qO(n2) and
outputs a rigid matrix. Let us fix an 0 ≤ r ≤ n−Ω(

√
n), and s = Ω

(
(n− r)2/ log n

)
. In time qO(n2), one can

go over all pairs of matrices M,S ∈ Fn×n. For every such pair, the algorithm checks whether S is s-sparse
and rank(M + S) ≤ r. When the algorithm finds an M for which there is no S with the above conditions,
it outputs M as a rigid matrix and halts. (Theorem 1.10 guarantees existence of such a rigid matrix.)

When the field F is infinite, an algorithm cannot enumerate all matrices. But even in this case it is
possible to construct a rigid matrix in time 2O(n2). In order to prove this, we will first show that there exists
a rigid matrix with all entries from {0, 1}. This will give us a way to enumerate all such matrices in time
2O(n2). Next, we will show that given such a matrix, one can check its rigidity in time 2O(n2), which will
finish the proof.
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Theorem 1.13 ([PR94]). For all large enough n, there exists a matrix M ∈ {0, 1}n×n such that

RR
M

( n

200

)
≥ n2

100
.

Proof. Let r = n
200 , and assume that all matrices M ∈ {0, 1}n×n have rigidity RR

M (r) ≤ s. We will show the
lower bound of s ≥ n2

100 . Each such matrix M can be written as

M = S + L1L2 , (1.14)

where S ∈ Rn×n is s-sparse, L1 ∈ Rn×r and L2 ∈ Rr×n. There are
(
n2

≤s
)
ways to choose the set of non-zero

entries in S, let us fix one such set Γ. From Equation 1.14, each entry of M is a degree-2 polynomial of the
entries of L1, L2 and Γ. In particular, there exist a set of n2 degree-2 polynomials {fΓ

ij}i,j∈[n] with variables
being the entries of L1, L2,Γ such that Mij = fΓ

ij(L1, L2, S).
For a set of t-variate polynomials F = {fij}i,j∈[n], we define its set of zero-patterns as the set of all

sequences of zero-non-zero outputs of functions from F :

Z(F ) = {M ∈ {0, 1}n×n : ∃x ∈ Rt ∀i, j ∈ [n], Mi,j = 1fij(x)6=0}.

We will use the following lemma which asserts that for a set F of low-degree polynomials, Z(F ) is small.

Lemma 1.15 ([RBG01]). If F = {fij}i,j∈[n] is a collection of t-variate polynomials of degree at most d,
then

|Z(F )| ≤
(
t+ dn2

t

)
.

Proof of Lemma 1.15. Let m = n2 be the number of polynomials, and let N = |Z(F )|. Let x1, x2, . . . , xN ∈
Rt be a set of points witnessing the N distinct zero-patterns of F . For an i ∈ [N ], let Si ⊆ [m] be the set of
(indices of) polynomials from F which are not zeros at the point xi. For every i ∈ [N ], define the following
polynomial

gi =
∏
k∈Si

fk .

Note that gi(xj) = 0 if and only if there exists fk ∈ Si \ Sj . Therefore, we have gi(xj) = 0 if and only if
Si 6⊆ Sj .

Now we prove that all {gi}i∈[N ] are linearly independent. Suppose, to the contrary, that there exist
a1, a2, . . . , aN ∈ R such that

∑
i∈[N ] aigi = 0, and at least one ai 6= 0. Let

i∗ = arg min
i∈[N ], ai 6=0

|Si| .

We have that ai∗gi∗(xi∗) 6= 0 and
∑
i∈[N ] aigi(xi∗) = 0. Due to the minimality of Si∗ , for every ai 6= 0,

Si 6⊆ Si∗ . This implies that aigi(xi∗) = 0 for all i 6= i∗, and, thus,
∑
i∈[N ] aigi(xi∗) 6= 0, which leads to a

contradiction.
Finally, since the degree of each gi is at most dm, and all gi are linearly independent, N is bounded

from above by the dimension of the space spanned by t-variate polynomials of degree at most dm. Thus,
N ≤

(
t+dm
t

)
.

Recall that from Equation 1.14, all matrices M ∈ {0, 1}n×n can be described by {fΓ
ij}i,j∈[n] for some

Γ ∈
(

[n]×[n]
s

)
, where each polynomial has degree at most 2 and depends on 2rn + s variables. Now, from

Lemma 1.15 with t = 2rn+ s and d = 2, we have that(
2rn+ s+ 2n2

2rn+ s

)
·
(
n2

≤ s

)
≥ 2n

2

. (1.16)
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Assume, for the sake of contradiction, that for some r ≤ n
200 we have s < n2

100 . We have that 2rn+s ≤ n2

50 .
Now, the left-hand side of Equation 1.16 can be bounded from above as follows:(

2rn+ s+ 2n2

2rn+ s

)
·
(
n2

≤ s

)
≤
( 101n2

50
n2

50

)
·
(

n2

≤ n2

100

)
≤ (101e)

n2

50 · (100e)
n2

100 ≤ 2
n2

2 ,

which contradicts Equation 1.16. Thus, we conclude that for any r ≤ n
200 , there exists a matrixM ∈ {0, 1}n×n

such that RR
M (r) ≥ n2

100 .

Now we show that one can check whether a given matrix M ∈ {0, 1}n×n is rigid in time 2O(n2). 3

Theorem 1.17. Let M ∈ {0, 1}n×n, and r and s be non-negative integers. Then one can decide whether
RR
M (r) > s in time 2O(n2).

Proof. Note that RR
M (r) ≤ s if and only if M = S + L1L2 for s-sparse S and L1 ∈ Rn×r, L2 ∈ Rr×n. For

any choice of non-zero entries of S, we have that the entries of M are degree-2 polynomials of t = 2nr + s
variables with {0, 1}-coefficients. It is known that deciding whether such a system of polynomial equations
has a real solution can be solved in time 2O(n2) (see, e.g., Proposition 13.19 in [BPR07]). Since there are(
n2

s

)
≤ 2n

2

choices of s non-zero entries, we have that the total running time of the algorithm is 2O(n2).

This way we have a set of 2n
2

matrices such that at least one of them is rigid, and rigidity of each matrix
can be checked in time 2O(n2). This gives us a 2O(n2)-time algorithm for constructing a rigid matrix over the
reals.

Although the above algorithms construct matrices of high rigidity, their running time is 2Ω(n2). We define
explicit constructions of matrices as matrices that have algorithms outputting all their entries in polynomial
time.

1.6 Summary
In Theorem 1.8 we showed that for every field F, matrixM ∈ Fn×n, and integer 0 ≤ r ≤ n, RF

M (r) ≤ (n−r)2.
Below we summarize the non-explicit lower bounds on rigidity presented in this chapter.

rigidity field running time reference

(n−r)2
logn any finite field existence Theorem 1.10

(n− r)2 any infinite field existence Theorem 1.10

(n− r)2 R algebraically inde-
pendent entries

Lemma 1.12

(n−r)2
logn any fixed finite field 2O(n2) section 1.5

(n− r)2 R 2O(n2) Theorem 1.13,
Theorem 1.17

Table 1.1: Summary of non-explicit lower bounds.

3For more efficient algorithms for the case of low rigidity parameters see [FLM+18]. A PSPACE-algorithm for this problem
follows immediately from the fact that existential theory of the reals lies in PSPACE [Can88].
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1.7 Notes
Rigidity was introduced as a means to study circuit complexity by Valiant [Val77] and Grigoriev [Gri76].
An excellent presentation of the known lower bounds on rigidity over large fields can be found in the
book of Lokam [Lok09]. The books of Jukna [Juk12] and Jukna and Sergeev [JS13] include many appli-
cations of matrix rigidity to circuit complexity. Earlier surveys on rigidity are due to Codenotti [Cod00]
and Cheraghchi [Che05]. The tight upper bound of Theorem 1.8, and the non-constructive lower bounds
of Theorem 1.10 and Theorem 1.13 were proven by Valiant [Val77], and Pudlák and Rödl [PR94]. The proof
of Theorem 1.2 was first given by Midrijānis [Mid05].
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Chapter 2

Explicit Constructions

Lecture 4In this chapter we give three proofs [Fri93, PR94, SSS97] of the best known explicit lower bound of
R(r) ≥ Ω

(
n2

r · log n
r

)
on matrix rigidity. All the three proofs work for (almost) any generator matrix of

a good linear code. Since there are explicit linear codes over all finite fields, the presented proofs work for
all finite fields. We will see that the last construction (due to Shokrollahi, Spielman and Stemann) easily
generalizes to infinite fields.

A linear code over a field F is a linear subspace C ⊆ Fn of dimension k. The distance of the code is the
minimum Hamming distance between two vectors in C or, equivalently, the minimum Hamming weight of a
non-zero vector in C.
Definition 2.1 (Linear code). Let F be a field, and n, k, d be positive integers such that d, k < n. A subspace
C ⊆ Fn is a linear code of dimension k with minimum distance d if

1. dim(C) = k;

2. for every x ∈ C\{0}, ‖x‖0 ≥ d.

A linear code C ⊆ Fn of dimension k can be specified by a generator matrix G ∈ Fn×k such that C is
the column space of G. Since we focus on asymptotic behavior of codes, by a code we will mean an infinite
sequence C = {Ci : i ∈ N} where Ci ⊆ Fn. For our purposes, it will suffice to say that a code is explicit if
there is a polynomial time algorithm that for every n, outputs a generator matrix of Cn in time poly(n). We
will say that a code C is good if for the codes of this sequence we have that k = Θ(n) and d = Θ(n).

There are exist explicit good linear error correcting codes over all finite fields (see, e.g., Justesen and
Goppa codes in [MS77, LG88, vL12]).

Proposition 2.2. For any finite field F, there exists an explicit family of linear error correcting codes over
F of dimension k = n/4 and minimum distance d = δn for a constant δ > 0.

The main result of this chapter is the following.

Theorem 2.3. Let F be a fixed finite field, and G ∈ Fn×k be a generator matrix of a linear code of dimension
k = Θ(n) and distance d = Θ(n), then for every Ω(log n) < r < O(n),

RF
G(r) ≥ Ω

(
n2

r
· log

n

r

)
.

2.1 The lower bound of Friedman
Let us fix a generator matrix G ∈ Fn×k of a good linear code with distance and dimension d, k = Θ(n). We
will prove the lower bound of Friedman in two steps. First, in Theorem 2.4 we will show that G has high
“column rigidity”. That is, in order to drop the rank of G to r, one has to modify at least Ω(nr logq

k
r ) entries

in some column of G. Second, in Theorem 2.5 we will use a simple averaging argument to reduce column
rigidity to rigidity.

10
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Theorem 2.4 ([Fri93]). Let F = Fq be a finite field of size q. Let G ∈ Fn×k be a generator matrix of a
code of dimension k and distance δn for a constant 0 < δ < 1. For any logq k ≤ r ≤ k

4 , if every column of
B ∈ Fn×k contains at most δn

4r logq
k
r non-zero entries, then

rank(G+B) > r .

Proof of Theorem 2.4. Assume, for the sake of contradiction, that there exists B ∈ Fn×kq such that rank(G+

B) ≤ r and each column of B has at most δn
4r logq

k
r nonzero entries.

The proof employs two ideas. First, using a packing argument, we will show that the kernel of G + B
must contain a sparse vector x ∈ Fk. Second, as Gx is a codeword of C and Gx + Bx = 0, Bx is also a
codeword of C and, thus, ‖Bx‖0 must be large due to the minimum distance property of C. This leads to a
contradiction as x and the columns of B are sparse.

Let us draw a Hamming ball of radius d/2 around each point in the kernel of G + B. Since we assume
that rank(ker(G+B)) = k − rank(G+B) ≥ k − r, if

qk−r ·
∣∣Hamming ball of radius d/2 in Fkq

∣∣ > qk,

then there must be two distinct points in the null space of G+ B such that their Hamming balls intersect.
This gives us a non-zero vector x in the kernel of G+ B of sparsity at most d. The following shows that it
suffice to pick d as an even number between 2r

logq
k
r

≤ d ≤ 2r
logq

k
r

+ 2.

∣∣Hamming ball of radius d/2 in Fkq
∣∣ ≥ ( k

d/2

)
· (q − 1)d/2

≥ q
d
2 ·logq[ 2k

d (q−1)] > qr .

Next, since Gx is a non-zero codeword of C and Gx+Bx = 0, we know that Bx is a non-zero codeword of
C and, thus, ‖Bx‖0 ≥ δn. On the other hand, x has only d non-zero coordinates, and each column of B has
at most δn

4r logq
k
r non-zero entries. We have that

‖Bx‖0 ≤ d ·
δn

4r
logq

k

r
≤

(
2r

logq
k
r

+ 2

)
δn

4r
logq

k

r
< δn ,

which contradicts the distance property of C.

Theorem 2.5. Let F = Fq be a finite field of size q. Let G ∈ Fn×k be a generator matrix of a code of
dimension k and distance δn for a constant 0 < δ < 1. Then for any logq k

2 ≤ r ≤ k
8 ,

RF
G(r) ≥

δkn logq
k
2r

8r
.

Proof. Assume, for the sake of contradiction, that there exists S ∈ Fn×kq such that rank(G + S) ≤ r and

‖S‖0 ≤
δkn logq

k
2r

8r . Let J ⊂ [k] be the indices of the k
2 sparsest columns of S, and let SJ be the sub-matrix

of S restricted to the columns in J . By Markov’s inequality, each column of SJ has at most(
δkn logq

k
2r

8r

)
/

(
k

2

)
=
δn

4r
logq

k

2r

many non-zero entries. Now Theorem 2.4 applied to GJ and SJ implies that a column in SJ must contain
more than δn

4r logq
k
2r non-zero entries, which leads to a contradiction.

Now, using good codes from Proposition 2.2, we get a lower bound of RF
G(r) ≥ Ω

(
n2

r · log n
r

)
for any

Ω(logq n) ≤ r ≤ n
32 .

11
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2.2 The lower bound of Pudlák and Rödl
Lecture 5

Theorem 2.6 ([PR94]). Let F = Fq be a finite field of size q. Let G ∈ Fn×k be a generator matrix of a code
of dimension k and distance δn for a constant 0 < δ < 1. Then for any 1 ≤ r ≤ k

q2 ,

RF
G(r) ≥

δkn logq
k
r

8r
.

Proof of Theorem 2.6. Assume that G = L+ S, where rank(L) ≤ r and ‖S‖0 ≤ δnk
4` for an even integer ` to

be chosen later. Then, by Markov’s inequality, there exist k
2 columns of S each having at most δn

2` non-zero
entries. Let G′, L′, S′ ∈ Fn×k/2 be the matrices G,L and S restricted to these columns. In particular, we
have that rank(L′) ≤ r.

The proof is based on the following beautiful idea. By the distance property of the code, each non-zero
linear combination of the columns of G′ has weight at least δn. Now, since the columns of L′ = G′ − S′
differ from the columns of G′ only in a few positions, any short linear combination of the columns of L′ is
still non-zero. This guarantees that L′ must generate a quite large space, which contradicts the assumption
about the low rank of L′.

Observe that for any x ∈ Fk/2q \{0k/2} such that ‖x‖0 ≤ `, we have

‖L′x‖0 = ‖(G′ − S′)x‖0 ≥ ‖G′x‖0 − ‖S′x‖0 ≥ δn−
δn

2`
· ` =

δn

2
> 0 ,

where ‖G′x‖0 ≥ δn follows from the fact that G′x is a non-zero codeword, and the other term follows from
the column-sparsity of S′. This observation implies that for any distinct y1, y2 ∈ Fk/2q with ‖y1‖0, ‖y2‖0 ≤ `

2 ,
L′y1 6= L′y2.

Note that the above gives us a lower bound on the number of vectors in the column span of L′. Thus,

rank(L′) ≥ logq

(
k/2

`/2

)
.

Picking 2r
logq

k
r

≤ ` ≤ 2r
logq

k
r

+ 2 as an even integer, we have

rank(L′) ≥ logq

(
k/2

`/2

)
>
`

2
logq

k

`
≥ r,

which leads to a contradiction. Thus, we conclude that RFq
G (r) ≥ δnk

4` ≥
δnk
8r log k

r .

2.3 The lower bound of Shokrollahi, Spielman and Stemann
In this section we show that a few changes in a matrix always leave some large submatrix unchanged. Namely,
if one makes only O(n

2

r · log n
r ) changes in an n×n matrix, then there must be an untouched r×r submatrix

in it. In particular, if we start with a matrix whose every r× r submatrix has high (or even full) rank, then
the matrix remains high-rank even after O(n

2

r · log n
r ) changes, which implies rigidity.

First, in Lemma 2.8 we will prove that after O(n
2

r · log n
r ) changes in n× n matrix there always remains

an untouched submatrix. Then, in Theorem 2.9, we will apply this lemma to prove simple lower bounds
on rigidity of explicit matrices, and in Theorem 2.11 to prove lower bounds on the rigidity of (normalized)
generator matrices of error-correcting codes.

We will need the classical Kővári-Sós-Turán theorem from extremal graph theory.

Theorem 2.7 (Zarankiewicz problem [KST54, Bol04]). Let n, s ∈ N such that s ≤ n and G be an n × n
bipartite graph. If G has no s× s bi-clique, then the number of edges in G is at most

(s− 1)1/s(n− s+ 1)n1−1/s + (s− 1)n.

12
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Proof of Theorem 2.7. Let G be an n×n Ks,s-free bipartite graph. Let Stars = {(u, T ) ⊆ [n]×
(

[n]
s

)
: (u, v) ∈

E(G), ∀v ∈ T} be the set of left s-stars in G. There are two ways to count Stars: (i) let d1, d2, . . . , dn be
the degrees of left vertices in G, then |Stars| =

∑
i∈[n]

(
di
s

)
and (ii) for each T ∈

(
[n]
s

)
, T forms at most s− 1

many left s-star due to the Ks,s-free property. Namely,∑
i∈[n]

(
di
s

)
≤ |Stars| ≤ (s− 1)

(
n

s

)
.

By convexity, this implies ∑
i∈[n]

(di − s+ 1)s ≤ (s− 1)(n− s+ 1)s .

By Hölder’s inequality,

∑
i∈[n]

(di − s+ 1) ≤

∑
i∈[n]

(di − s+ 1)s

1/s

· n1−1/s ≤ (s− 1)1/s(n− s+ 1)n1−1/s .

Finally, as |E(G)| =
∑
i∈[n] di, we have that

|E(G)| =
∑
i∈[n]

di =
∑
i∈[n]

(di − s+ 1) + (s− 1)n ≤ (s− 1)1/s(n− s+ 1)n1−1/s + (s− 1)n .

Lemma 2.8. Let n, r ∈ N such that log n ≤ r ≤ n, and A be an n × n matrix. If fewer than n(n−r)
2(r+1) log n

r

entries of A are changed, then some (r + 1)× (r + 1) submatrix of A remains untouched.

Proof of Lemma 2.8. Consider an n × n bipartite graph G, whose vertices in one part correspond to the
rows of A, and vertices in the other part correspond to the columns of A. We connect the vertex i from the
first part to the vertex j from the second part if and only if the entry Aij remains unchanged. Thus, an
(r+ 1)× (r+ 1) unchanged submatrix corresponds to an (r+ 1)× (r+ 1) bi-clique in the bipartite graph G.

We assume, towards a contradiction, that there is no (r+ 1)× (r+ 1) untouched submatrix in A, i.e., no
(r + 1)× (r + 1) bi-clique in G. We apply Theorem 2.7 with s = r + 1, and conclude that a graph without
an (r + 1)× (r + 1) bi-clique has at most

r1/(r+1)(n− r)n1−1/(r+1) + rn = n2 − n(n− r) ·
[
1−

( r
n

)1/(r+1)
]

< n2 − n(n− r)
log n

r

2(r + 1)

edges, where the last inequality uses the approximation e−x < 1 − x
2 for x ∈ [0, 1] and holds whenever

r ≥ log n.
Finally, we conclude that if fewer than n(n−r)

2(r+1) log n
r entries in A are changed, i.e., G has more than

n2 − n(n−r)
2(r+1) log n

r edges, then some (r + 1)× (r + 1) submatrix of A remains untouched.

An immediate corollary of Lemma 2.8 is that if every (r + 1)× (r + 1) submatrix of A is full-rank, then
RA(r) ≥ n2

4(r+1) log n
r for log n ≤ r ≤ n

2 . The following theorem applies this idea to Cauchy matrices over
small (but non-constant size) fields.

Theorem 2.9 ([SSS97], non-fixed field). Let F be a field containing at least 2n distinct elements denoted by
x1, x2, . . . , xn and y1, y2, . . . , yn. Let A ∈ Fn×n be a Cauchy matrix: Aij = 1

(xi−yj) . Then

RF
A(r) ≥ n2

4(r + 1)
log

n

r

for log n ≤ r ≤ n
2 .

13
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Proof of Theorem 2.9. By the above discussion, it suffices to show that every (r+ 1)× (r+ 1) submatrix of
the Cauchy matrix A has full rank for log n ≤ r ≤ n

2 . As every such submatrix is also a Cauchy matrix, it
suffices to show that every Cauchy matrix has full rank.

In Problem 3 of Homework 1, we will show that the determinant of the Cauchy matrix A is

det(A) =

∏
1≤i<j≤n(xj − xi)(yi − yj)∏

1≤i,j≤n(xi − yj)
. (2.10)

Since all xi and yj are distinct, det(A) 6= 0, which finishes the proof.

Finally, we use the above idea to construct (moderately) rigid matrices over constant-size fields.

Theorem 2.11 ([SSS97], fixed field). Let F be a field, n ∈ N, ε ∈ (0, 1), and C ⊆ F2n be an explicit linear
code of dimension n with minimum distance (1 − ε)n. Then, there exists a matrix A ∈ Fn×n that can be
efficiently constructed from any generator matrix of C such that

RF
A(r) ≥ n2

8(r + 1)
log

n

(2r + 1)

for any εn ≤ r ≤ n−2
2 .

Proof of Theorem 2.11. Let G ∈ F2n×n be a generator matrix of C. We run Gaussian elimination in poly-
nomial time to write G in the standard form:

G′ =

(
In
A

)
,

where In is the n× n identity matrix and A ∈ Fn×n.

Claim 2.12. Let s = r + 1. Then, every 2s× 2s submatrix of A has rank at least s.

Proof of Claim 2.12. Assume that there is a 2s × 2s submatrix of A of rank less than s. Without loss of
generality, let it be the submatrix A′ ∈ F2s×2s in the top left corner of A. As rank(A′) < s, there exists a
linear combination of s columns of A′ which equals 0. Since any linear combination of the columns of G′ is
a codeword of C, we have a codeword x ∈ F2n whose first n coordinates have s non-zeros, and the last n
coordinates have at least 2s zeros. This gives us a codeword x ∈ C of sparsity

‖x‖0 ≤ s+ (n− 2s) = n− s = n− r − 1 < (1− ε)n ,

which contradicts the assumption on the distance of the code C.

Finally, Lemma 2.8 implies that in order to drop the rank of A to r, one needs to make at least

n(n− 2r − 2)

4(r + 1)
log

n

2r + 1
≥ n2

8(r + 1)
log

n

2r + 1

changes for any εn ≤ r ≤ n−2
4 .

There are explicit constructions of algebraic-geometric codes [VT91, MS77] of dimension n in F2n
q with

minimum distance (1 − ε)n for ε = 2√
q−1 for every prime square q. In particular, for every prime square

q > 25, Theorem 2.11 applied to the algebraic-geometric codes gives rigidity lower bounds over Fq for some
range of r = O(n).
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2.4 Rigidity of the Walsh-Hadamard Matrix
Lecture 6

Definition 2.13. For any N = 2n, the Walsh-Hadamard matrix HN ∈ CN×N is defined as

H2 =

(
1 1
1 −1

)
,

HN = H⊗n2 ,

where ⊗ denotes the Kronecker product.
First, in Problem 4 of Homework 1 we prove that HN is not rigid for large rank r ≥ N/2. Then, in

Theorem 2.18 we will prove that for every rank r ≤ N/2, the rigidity of HN is at least RC
H(r) ≥ N2

4r .

Lemma 2.14 (Homework 1, Problem 4). Let H ∈ CN×N be the Walsh-Hadamard matrix. Then

RC
H(N/2) ≤ N .

In Problem 5 of Homework 1 we will prove the following facts about matrix norms.

Proposition 2.15. Let M ∈ Cm×n be a matrix, k = min(m,n), and r = rank(M). Let

σ1(M) ≥ . . . ≥ σr(M) > σr+1(M) = . . . = σk(M) = 0

be the singular values of M . Then

• The Frobenius norm ‖M‖F =
(∑m

i=1

∑n
j=1 |Mi,j |2

)1/2

=
(∑k

i=1 σ
2
i (M)

)1/2

.

• The spectral norm ‖M‖2 = σ1(M).

• If M ′ is a submatrix of M , then σi(M ′) ≤ σi(M). In particular, ‖M ′‖2 ≤ ‖M‖2.

We will also need the following lower bound on the rank of submatrices of the Walsh-Hadamard matrix
due to Lokam [Lok95].

Lemma 2.16 ([Lok95]). For any submatrix H ′ ∈ Ca×b of the Walsh-Hadamard matrix H ∈ CN×N ,

rank(H ′) ≥ ab/N .

Proof. By Proposition 2.15,

‖H ′‖2F =

k∑
i=1

σ2
i (H ′) ≤ rank(H ′) · σ2

1(H ′) = rank(H ′) · ‖H ′‖22 ≤ rank(H ′) · ‖H‖22 . (2.17)

Since the absolute values of all entries in H ′ are 1, ‖H ′‖2F = ab. From H · HT = N · IN , we have that
σi(H) =

√
N for 1 ≤ i ≤ N , and, thus, ‖H‖2 =

√
N .

Now, from Equation 2.17,
rank(H ′) ≥ ‖H ′‖2F /‖H‖22 = ab/N .

Now we are ready to present the best known lower bound on rigidity of the Walsh-Hadamard matrix due
to de Wolf [De 06]. Later in the course, we will also prove an upper bound on rigidity of the Walsh-Hadamard
matrix.

Theorem 2.18 ([De 06]). Let H ∈ CN×N be the Walsh-Hadamard matrix. For every r ≤ N/2,

RC
H(r) ≥ N2

4r
.
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Proof. Let s = RC
H(r), and let S ∈ CN×N be such that

rank(H + S) ≤ r and ‖S‖0 ≤ s .

Then by an averaging argument, there exists a set of 2r rows of S with at most 2rs/n non-zero entries.
If N ≤ 2rs/N , then s ≥ N2

2r concludes the proof. If N > 2rs/N , then we consider a submatrix H ′ ∈
C(2r)×(N−2rs/N) of H where all entries of S are zeros. By Lemma 2.16,

r ≥ rank(H ′) ≥ 2r(N − 2rs/N)/N ,

which implies s ≥ N2

4r .

In the table below we summarize the known rigidity lower bounds for explicit matrices.

rigidity reference

n2

r4 log2 r
[PS88]

n2

r3 log r [Raz88]

n2

r2 [Alo94]
n2

r2 [Lok95]
n2

256r [KR98]
n2

4r [De 06]

Table 2.1: Lower bounds on the rigidity of the Walsh-Hadamard matrix.

2.5 Overview of Chapters 1 and 2
See the slides for Lectures 6 and 7 for an overview of the following tools (and their applications).

• Probabilistic Method

• Algebraic Independence Lecture 7

• Polynomial Method

• Zarankiewicz Problem

• Hölder’s inequality

• Zero-patterns Lecture 8

• Hadamard Matrix

• Spectral Methods

• Error-Correcting Codes
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Chapter 3

Semi-explicit constructions

Lecture 9

3.1 Constructions with independent entries
Shoup and Smolensky [SS91] used an algebraic dimension argument for proving super-linear lower bounds
against linear circuits of sub-polynomial depth. Lokam [Lok00] extended their argument, and proved a lower
bound on rigidity of Vandermonde matrices containing the powers of n algebraically independent entries.
Later Lokam [Lok06] generalized these ideas for proving quadratic lower bounds on rigidity for linear rank of
matrices with infinite precision in the entries. Kumar, Lokam, Patankar and Sarma [KLPS14] used algebraic
geometry arguments to construct a matrix with optimal rigidity parameters for every r (at the expense of
having infinite precision in the entries, too).

This week we will see some of these constructions. Namely, we will prove rigidity lower bounds for
a Vandermonde matrix with algebraically independent entries [Lok00], and for a matrix consisting of square
roots of distinct primes [Lok06]. See [LTV03, Lok09, KLPS14, GHIL16] for excellent overviews of the
algebraic geometry approach to rigidity.

Recall from Lemma 1.12 that any matrix with n2 algebraically independent entries is rigid. We would
like to reduce the number of algebraically independent entries needed for constructions of rigid matrices, as
well as to weaken the assumption on their independence. In the next class we will show that n2 linearly
independent (but not algebraically independent) numbers are also sufficient for high rigidity. Today we will
show that even n algebraically independent entries are sufficient for (moderate) rigidity.

3.1.1 Vandermonde matrix with algebraically independence entries
Today we will show that Vandermonde matrices V with powers of algebraically independent entries have
rigidity RF

V (r) ≥ Ω(n2) for r ≤ O(
√
n).

Definition 3.1 (Vandermonde matrix). A Vandermonde matrix V ∈ Fn×n is a matrix of the form Vij = xji
for some x1, x2, . . . , xn ∈ F.

We will prove that Vandermonde matrices V are rigid as follows. First, in Definition 3.3 we will introduce
a measure of algebraic independence (over Q) of a set of numbers, called the Shoup-Smolensky dimension.
Second, in Lemma 3.4 we will prove that the Shoup-Smolensky dimension of low-rank matrices is low. Finally,
in Lemma 3.5 we will show that the Shoup-Smolensky dimension of V − S for any sparse matrix S is large.
From this, in Theorem 3.2, we will conclude that V is rigid.

Theorem 3.2 (Vandermonde matrix with algebraically independent entries is rigid). Let x1, . . . , xn ∈ C
be algebraically independent over Q, and let V ∈ Cn×n be the Vandermonde matrix Vi,j = xji . For any
1 ≤ r ≤

√
n

10 ,
RC
V (r) ≥ n(n− 100 · r2)/2 .
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For example, when r ≤ ε
√
n for a small enough ε > 0, we have RC

V (r) ≥ Ω(n2). However, it is an
interesting open problem to prove non-trivial rigidity lower bound for such Vandermonde matrices in the
regime of r = ω(

√
n).

Definition 3.3 (Shoup-Smolensky dimension [SS91]). For any t, n ∈ N and A ∈ Cn×n, the t-Shoup-
Smolensky dimension of A, denoted dimSS

t (A), is the dimension of the vector space over Q spanned by
products of t distinct elements of A.

To prove Theorem 3.2, we will to show that rank-r matrices have Shoup-Smolensky dimension ≤
(
nr+t
t

)2
,

while V even after s changes has Shoup-Smolensky dimension ≥ (n− s
t )
t.

Lemma 3.4. For any t, n ∈ N, and A ∈ Cn×n of rank r = rank(A),

dimSS
t (A) ≤

(
nr + t

t

)2

.

Proof of Lemma 3.4. Since A has rank r, there exists B,C> ∈ Cn×r such that A = BC. Then each entry
of A can be written as a degree-2 polynomial where each monomial is of the form b1c1 for some b1 from B
and c1 from C.

Thus, any t-wise product of entries from A is a degree-2t polynomial where each monomial is of the form∏
i∈[t] bici for some bi from B and ci from C for all i ∈ [t]. This implies that the vector space spanned by

the products of t distinct elements of A is also spanned by these monomials. As the number of n-variate
monomials of degree ≤ d is

(
n+d
d

)
, we conclude that dimSS

t (A) ≤
(
nr+t
t

)2
.

Lemma 3.5. Let x1, . . . , xn ∈ C be algebraically independent over Q, and let V ∈ Cn×n be the Vandermonde
matrix Vi,j = xji . For any 1 ≤ t ≤ n

2 , 1 ≤ s < tn, and S ∈ Cn×n such that ‖S‖0 ≤ s,

dimSS
t (V − S) ≥

(
n− s

t

)t
.

Proof of Lemma 3.5. Let J ⊂ [n] be the indices of the t sparsest rows of S, and SJ , VJ to be the restrictions
of S and V to the rows in J . By Markov’s inequality, each row in SJ has at most s

t non-zero entries.
Now, for each row in VJ − SJ , there are at least (n− s

t ) unchanged entries of the form xji . Note that if
x1, x2, . . . , xn are algebraically independent, then any collection of distinct monomials of these variables is
linearly independent. As there are at least (n − s

t )
t distinct monomials in the set of t-wise products of the

entries from VJ − SJ , we conclude that dimSS
t (V ) ≥ (n− s

t )
t.

Finally, Theorem 3.2 follows from Lemma 3.4 and Lemma 3.5.

Proof of Theorem 3.2. For the sake of contradiction, assume that V = L + S where rank(L) ≤ r and
‖S‖0 ≤ s. Let us set t = n

2 and s = n
(
n− 100r2

)
/2. By Lemma 3.4, we know that

dimSS
t (L) ≤

(
nr + t

t

)2

≤

(
e
(
nr + n

2

)
n
2

)n
2

≤ (81r2)
n
2 .

By Lemma 3.5,

dimSS
t (V − S) ≥

(
n− s

t

)t
=
(
100r2

)n
2 .

Therefore, dimSS
t (V − S) > dimSS

t (L), which contradicts the assumption that V = L+ S.

3.1.2 Matrix with square roots of distinct primes
Lecture 10Today we will show that a matrix A with square roots of n2 distinct primes has rigidity RC

A(r) ≥ Ω(n2)
for every 1 ≤ r ≤ n

32 .

Theorem 3.6. Let A ∈ Cn×n be a matrix with square roots of n2 distinct primes as its entries. For any
1 ≤ r ≤ n

32 ,
RC
A(r) ≥ n(n− 16r) .
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Similarly to the proof of Theorem 3.2, we will show that any matrix with square roots of distinct primes
has large Shoup-Smolensky dimension even when some entries of the matrix are changed.

We will use the Besicovitch theorem [Bes40] about linear independence over Q.

Theorem 3.7 (Besicovitch [Bes40]). Let a1, a2, . . . , am be m distinct square roots of square-free integers,
then they are all linearly independent over Q.

Lemma 3.8. Let A be an n×n matrix with square roots of n2 distinct primes as its entries, and S ∈ Cn×n
such that ‖S‖0 ≤ s. For any 1 ≤ s, t ≤ n2,

dimSS
t (A− S) ≥

(
n2 − s
t

)
.

Proof of Lemma 3.8. There are at least n2−s square roots of distinct primes in the matrix A−S. Therefore,
there are at least

(
n2−s
t

)
t-wise products of A − S resulting in distinct square roots of square-free integers.

Then, by Theorem 3.7, the t-Shoup-Smolensky dimension of A− S is at least dimSS
t (A− S) ≥

(
n2−s
t

)
.

Now we finish the proof of Theorem 3.6.

Proof of Theorem 3.6. Let us set t = nr and s ≤ n(n − 16r). Assume, for the sake of contradiction, that
A = L+ S where rank(L) ≤ r and ‖S‖0 ≤ s. From Lemma 3.4,

dimSS
t (L) ≤

(
nr + t

t

)2

≤
(

2nr

nr

)2

< 22nr·2 = 16nr .

On the other hand, from Lemma 3.8,

dimSS
t (A− S) ≥

(
n2 − s
t

)
≥
(

16nr

nr

)nr
= 16nr .

Thus, dimSS
t (A− S) < dimSS

t (L), which leads to a contradiction.

3.1.3 Lower Bounds against Linear Circuits
While the rigidity lower bound from Section 3.1.2 implies a super-linear circuit lower bound against linear
circuits for a (not fully explicit) matrix A with square roots of distinct primes, the same technique can be
used to directly prove stronger circuit lower bounds for the same matrix A. Shoup and Smolensky [SS91]
proved that any linear circuit (of any depth) computing the linear transformation given by such a matrix A
must have size at least Ω(n2/ log n) (which is optimal as every linear function can me computed by a circuit
of size O(n2/ log n) [Lup56]).

For simplicity, in this section for an n×n matrix A, by its n2-Shoup-Smolensky dimension dimSS
n2 (A) we

will mean the dimension of the vector space over Q spanned by products of at most n2 elements of A (rather
than exactly n2 elements of A). We will use the following technical lemma.

Lemma 3.9. Let C be a linear circuit of size s computing x→ Bx for B ∈ Cn×n. Then

dimSS
n2 (A) ≤ (n2 + 2s)2s .

Proof. See the class video and slides for a full proof.

Now we can prove an optimal circuit lower bound for matrices consisting of square roots of distinct
primes.

Theorem 3.10. Let A ∈ Cn×n be a matrix with square roots of n2 distinct primes as its entries. For any
1 ≤ r ≤ n

32 ,
RC
A(r) ≥ n(n− 16r) .

19



Matrix Rigidity Sasha Golovnev November 2, 2020

Proof. By Besicovitch Theorem (Theorem 3.7), all 2n
2

products of subsets of elements of A are linearly
independent, therefore

dimSS
n2 (A) ≥ 2n

2

.

This bounds, together with the bound of Lemma 3.9, implies

s ≥ Ω(n2/ log n) .

3.2 Project Topics
Lecture 11We discussed the following project ideas (see the slides and video for more details):

• Provable Cryptography

• Static Data Structures

• Random Algebraic Method

3.3 Rigidity of Hankel and Toeplitz matrices
Lecture 12

Definition 3.11 (Hankel/Toeplitz matrix). A ∈ Fn×n is a Hankel matrix if Ai,j = ai+j−1 for some
a1, a3, . . . , a2n−1 ∈ F. T ∈ Fn×n is a Toeplitz matrix if Ti,j = ti−j for some t−(n−1), t−(n−2), . . . , tn−1 ∈ F.

A =


a1 a2 . . . an
a2 a3 . . . an+1

...
...

. . .
...

an an+1 . . . a2n−1

 , T =


t0 t−1 . . . t−(n−1)

t1 t0 . . . t−(n−2)

...
...

. . .
...

tn−1 tn−2 . . . t0

 .

A random Hankel matrix A ∈ Fn×n is a Hankel matrix where a1, a3, . . . , a2n−1 ∈ F are independent
uniformly random elements of F. In Theorem 3.13 we will prove a lower bound on the rigidity of a random
Hankel matrix, and later in the course we will prove an upper bound on the rigidity of all Hankel matrices.
These bounds naturally extend to the case of Toeplitz matrices. Note that only O(n) random bits are needed
to sample a random Hankel/Toeplitz matrix over F2. We will need the following generalization of Toeplitz
matrices.
Definition 3.12. B ∈ Fn×n is a k-Hankel matrix for k ∈ [n] if Bi,j = bk(i−1)+j for some b1, b2, . . . , b(n−1)k+n ∈
F.

B =


b1 b2 . . . bn
bk+1 bk+2 . . . bk+n

...
...

. . .
...

bk(n−1)+1 bk(n−1)+2 . . . bk(n−1)+n

 .

For example, 1-Hankel matrix is a usual Hankel matrix from Definition 3.11. In particular, every row of a
random 1-Hankel matrix has one new random element. A random n-Hankel matrix is a uniform random
matrix with n2 random entries. In general, every row of a random k-Hankel matrix has k new random
entries.

Theorem 3.13 (Rigidity of a random Hankel matrix [GT16]). For any
√
n ≤ r ≤ n

32 , a random Hankel
matrix A ∈ Fn×n has

RF2

A (r) ≥ Ω

(
n3

r2 log n

)
with probability 1− o(1).
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The bound of Theorem 3.13 improves on the known explicit rigidity bounds (presented in chapter 2) for
r = o

(
n

logn log logn

)
. For example, for r = n1−ε for a constant ε ∈ (0, 1

2 ), Theorem 3.13 gives a lower bound
of

RF2

A

(
n1−ε) ≥ Ω

(
n1+2ε

log n

)
,

while the bounds of chapter 2 give only RF2

A

(
n1−ε) ≥ Ω(n

2

r · log n
r ) ≥ Ω(n1+ε log n).

We will prove Theorem 3.13 in two steps. Let n and k be integers such that k divides n. In the first
step, we will show that any n× n Hankel matrix can be partitioned into k2 matrices of size n

k ×
n
k , each of

which is k-Hankel. In the second step, we will prove that a random k-Hankel matrix is quite rigid with high
probability. From these two facts, we will conclude that a random Hankel matrix has high rigidity (with
high probability).

Lemma 3.14 (Partitioning of a Hankel matrix). Let n, k ∈ N such that k divides n. Any Hankel matrix
A ∈ Fn×n can be partitioned into k2 matrices Ai,j ∈ Fn

k×
n
k for i, j ∈ [k], s.t. each Ai,j is k-Hankel.

Proof of Lemma 3.14. Let m = n
k . For i, j ∈ [k], let us define the following sets of indices of rows and

columns

Ii = {i, i+ k, . . . , i+ (m− 1)k} ;

Jj = {(j − 1)m+ 1, (j − 1)m+ 2. . . . , jm} .

We partition the Hankel matrix A into k2 submatrices Ai,j , i, j ∈ [k] as follows: the matrix Ai,j contains all
entries of A at the intersections of the rows Ii and the columns Jj . It is easy to see that each Ai,j ∈ Fm×m,
and that {(Ii, Jj)}i,j∈[m] forms a partition of [n]× [n].

It remains to show that each Ai,j is k-Hankel. Consider the element of the matrix Ai,j located at the
position (s, t):

Ai,js,t = Ai+(s−1)k,(j−1)m+t .

Since A is a Hankel matrix, by Definition 3.11, Ai+(s−1)k,(j−1)m+t = ai+(j−1)m−1+(s−1)k+t. Now, let b` =
ai+(j−1)m−1+` for ` ∈ [(m− 1)k +m]. Then

Ai,js,t = Ai+(s−1)k,(j−1)m+t = ai+(j−1)m−1+(s−1)k+t = b(s−1)k+t ,

which satisfies Definition 3.12.

Now we prove Theorem 3.13 using Lemma 3.14 and Lemma 3.15.

Proof of Theorem 3.13. We will prove this theorem for every
√
n ≤ r ≤ n

32 such that 2r divides n, the same
result (with a larger constant factor hidden in the Ω-notation) for other values of r will follow immediately.
Let us set m = 2r and k = n

m .
From Lemma 3.14, A can be partitioned into m × m k-Hankel matrices {Ai,j}i,j∈[k]. For the sake of

contradiction, assume that A = S + L where ‖S‖0 ≤ n3

1600r2 logn and rank(L) ≤ r. By averaging, there exist
i, j ∈ [k] such that Ai,j = Si,j + Li,j where

‖Si,j‖0 ≤
‖S‖0
k2
≤ n

400 log n
,

and rank(Li,j) ≤ rank(L) ≤ r. In particular, Ai,j is not rigid: RF2

Ai,j (r) ≤
n

400 logn .
However, Lemma 3.15 and union bound imply that with probability 1−m2 ·2−km/20 = 1−o(1), for every

i, j ∈ [k], RF2

Ai,j (m/2) ≥ km
400 logm = n

400 logm > n
400 logn . This contradicts the assumption that A = S + L.

We conclude that A has rigidity RF2

A (r) ≥ n3

1600r2 logn with probability 1− o(1).

Lecture 13
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Lemma 3.15 (Rigidity of k-Hankel matrices). For any 16 ≤ k ≤ m, a random m×m k-Hankel matrix B
has rigidity

RF2

B (m/2) ≥ km

400 logm

with probability at least 1− 2−km/20.

Proof of Lemma 3.15. Let S be a fixed m×m matrix, and C = B + S. In the following we will show that
rank(C) ≤ m/2 with probability at most 2−km/10, let us finish the proof of Lemma assuming this. Since for
s = km

400 logm , the number of s-sparse matrices S is bounded from above by
(
m2

≤s
)
≤ 24s logm ≤ 2km/100, we

conclude that B has rigidityRF2

B (m/2) ≥ km
400 logm with probability at least 1−2km/100·2−km/10 ≥ 1−2−km/20.

Let Ci denote the ith row of C for i ∈ [m]. Assuming that rank(C) ≤ m/2, let us greedily pick a row
basis of C. Namely, we go from the first to the last rows of C, and include the index of the current row in
the set I if and only if the current row is not spanned by the previous rows. We have |I| ≤ m/2, and for
every i ∈ [m] \ I, the row Ci is spanned by the rows ({Ci′}i′∈I∩[i−1]). In particular,

Pr
B

[rank(C) ≤ m/2] = Pr
B

[
∃I ⊆ [m], |I| ≤ m/2: ∀i ∈ [m] \ I, Ci ∈ span({Ci′}i′∈I∩[i−1])

]
(3.16)

Now we fix a set I ⊆ [m] of size |I| ≤ m/2, and we will show that

Pr
B

[
∀i ∈ [m] \ I, Ci ∈ span({Ci′}i′∈I∩[i−1])

]
≤ 2−km/8 . (3.17)

Then a union bound over fewer than 2m choices of I ⊆ [m] will imply that the expression in Equation 3.16
is upper bounded by 2−km/10, which will finish the proof.

It remains to show that for every fixed set I ⊆ [m] of size |I| ≤ m/2, Equation 3.17 holds. First, let
us greedily choose row indices 1 ≤ i1 < i2 < · · · < i` ≤ m such that (i) it 6∈ I for each t ∈ [`], and (ii)
it+1− it ≥ m

k for each t ∈ [`− 1]. Namely, i1, i2, . . . , i` are row indices of C that do not belong to the chosen
basis I, and the distance between any two rows is at least m

k . If we greedily pick indices i1, i2, . . . , i`, then
each time when we pick one row we remove at most m

k − 1 rows, and we have ` ≥ m−|I|
dm/ke ≥

m/2
dm/ke ≥ k/4. For

every t ∈ [`], let Et be the event that Cit ∈ span({Ci′}i′∈I∩[it−1]). Then the expression from Equation 3.17
is bounded by

Pr
B

[
∀i ∈ [m] \ I, Ci ∈ span({Ci′}i′∈I∩[i−1])

]
≤Pr

B
[Et, ∀t ∈ [`]]

=
∏̀
t=1

Pr
B

[Et | Et′ , ∀t′ < t] .

In what follows, we will prove that PrB [Et | Et′ , ∀t′ < t] ≤ 2−m/2, and, since ` ≥ k/4, this will finish the
proof of Equation 3.17 and the proof of Lemma.

Note that the events Et′ , ∀t′ < t depend only on the row Cit−1 and above. Therefore, the values of the
first it−1 rows of B completely determine the events Et′ , ∀t′ < t. Since it−1 ≤ it − m

k , the values of the first
it − m

k rows of B also completely determine those events. Since B is k-Hankel, the first it − m
k rows of B

are specified by elements b1, . . . , bk(it−1) (see the picture below). Instead of conditioning on Et′ , ∀t′ < t, we
will prove a stronger statement: for any values b1, . . . , bk(it−1) of the elements in the first it − m

k rows of B,
PrB

[
Et | b1, . . . , bk(it−1)

]
≤ 2−m/2. (In particular, this holds for all values of b1, . . . , bk(it−1) that satisfy the
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events Et′ , ∀t′ < t.) 

b1 b2 . . . bm
bk+1 bk+2 . . . bk+m

...
...

. . .
...

bk(it−1)−m+1 bk(it−1)−m+2 . . . bk(it−1)

...
...

. . .
...

bk(it−1)+1 bk(it−1)+2 . . . bk(it−1)+m

...
...

. . .
...

bk(m−1)+1 bk(m−1)+2 . . . bk(m−1)+m


row it − m

k

row it

Now let the row Cit be spanned by the basis rows from above it:

Cit =
∑

j∈I∩[it−1]

djCj (3.18)

for some constants dj ∈ {0, 1}. Let us fix the coefficients of this linear combination: fix dj ∈ {0, 1} for each
j ∈ I∩[it−1]. The final observation is that for fixed b1, . . . , bk(it−1) and fixed dj , there is a unique assignment
to the row Bit that satisfies Equation 3.18. Indeed, the values of C in the first k columns and the first it− 1
rows are fixed (as b1, . . . , bk(it−1) are fixed). Therefore, this linear combination gives a unique assignment to
the first k elements of Bit : to the elements bk(it−1)+1, . . . , bkit . After this, we have that the first 2k elements
in the first it − 1 rows are fixed (as now b1, . . . , bkit are fixed). Now the fixed linear combination gives a
unique assignment to the next k elements of Bit . We repeat this until we find a unique assignment to Bit
that satisfies Equation 3.18. Thus, for each fixed set of values dj ∈ {0, 1} for j ∈ I ∩ [it − 1], the probability
of this event is exactly 2−m. The number of such sets dj ∈ {0, 1} is 2|I∩[it−1]| ≤ 2|I| ≤ 2m/2. By a union
bound, this gives us that

Pr
B

[Et | Et′ , ∀t′ < t] ≤ Pr
B

[
Et | b1, . . . , bk(it−1)

]
≤ 2m/2 · 2−m = 2−m/2 .

Note that the problem of checking whether a given matrix A has rigidity at leastRF
A(r) ≥ s is in coNP for

all values of r and s. We can use Theorem 3.13 to construct a matrix M with rigidity RF2

M (r) ≥ Ω
(

n3

r2 logn

)
in EcoNP = ENP.1 Indeed, in time 2O(n) we brute force all Hankel matrices, we use coNP oracle (or NP
oracle) to check whether a matrix is rigid. Theorem 3.13 guarantees that this algorithm will find a matrix
with the desired rigidity parameters.

In fact, such a matrix can be constructed in time E without an NP oracle. We will prove this in
Homework 2.

3.4 Rigidity in sub-exponential time
Lecture 14

Theorem 3.19 ([AKTV18]). Let n be a multiple of 2k, and let Fq be the field of size q. In time qO(k2), one
can construct a matrix A ∈ Fn×nq such that

RFq
A (k) ≥ Ω(n2/ log k) .

Proof of Theorem 3.19. By Theorem 1.10, there exists a matrixM ∈ F2k×2k
q of rigidityRFq

M (k) ≥ Ω(k2/ log k).
One can find such a matrix in time qO(k2) as follows. Iterate over all pairs of matrices M,S ∈ F2k×2k

q . For

1When we say that a matrix M belongs to ENP, we mean that there exists a family of matrices Mn ∈ Fn×n for infinitely
many values of n such that there is a 2O(n)-time algorithm with an NP oracle that on input 1n outputs Mn.
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every such pair, check whether S is Ω(k2/ log k)-sparse and rank(M + S) ≤ k. Find a matrix M for which
there is no S with the above conditions, this matrix M has the desired rigidity parameters.

Next we define the matrix A ∈ Fn×nq as (n/2k)2 copies of the matrix M ∈ F2k×2k
q stacked together. In

order to drop the rank of A below k, one has to decrease the rank of each copy of M below k. Therefore,
this requires at least ( n

2k

)2

· Ω(k2/ log k) = Ω(n2/ log k)

changes in the entries of A. From this we conclude that RFq
A

(
k
2

)
≥ Ω(n2/ log k).

Corollary 3.20. For any ε > 0 and large enough n, one can construct in sub-exponential time 2O(n1−2ε) a
matrix A ∈ Fn×n2 such that

RF2

A (n
1
2−ε) ≥ Ω(n2/ log n) .

Kumar and Volk [KV20] generalize this result, and show that in time 2O(n−Ω(1/d)) one can construct a
matrix A ∈ En×n, where E is the extension of Fq of degree 2O(n−Ω(1/d)), such that every depth-d circuit
computing x→ Ax must have size at least n1+Ω(1/d).

3.5 Rigidity of sparse matrices
Recall that for new circuit lower bounds, we would like to construct a matrix M in the complexity class
ENP such that RF

M (εn) ≥ Ω(n1+δ) (for some constants ε, δ > 0). Although this is still widely open, in this
section, we will build such a matrix M in deterministic time 2O(n1+δ). For this, we will prove that there
exists an n1+ε-sparse matrix with these rigidity parameters, and then we will show how to find it in time
2O(n1+δ).

Theorem 3.21. For any ε > 0, in time 2n
1+ε logn, one can construct a matrix A ∈ Fn×n2 such that

RF2

A (n/1000) ≥ Ω(n1+ε) .

In fact, this matrix A will be an n1+ε-sparse matrix.

Theorem 3.22. For any ε > 0, there exists an n1+ε-sparse matrix A ∈ Fn×n2 such that

RF2

A (n/1000) ≥ Ω(n1+ε) .

First, let us see how Theorem 3.21 is an immediate corollary if Theorem 3.22.

Proof of Theorem 3.21. In time 2O(n1+ε logn) we enumerate all n1+ε-sparse matrices A and all s-sparse ma-
trices S for some s = Ω(n1+ε). Now, in time poly(n) we compute rank(A + S), and check whether A has
rigidity RF2

A (n/1000) ≥ Ω(n1+ε). Theorem 3.22 implies that this algorithm returns a rigid matrix for every
large enough n.

It will prove convenient to work with the following special cases of sparse and rigid matrices.
Definition 3.23. A matrix S ∈ Fn×n is t-regularly sparse if each row and each column of S has at most
t non-zero entries. A matrix M ∈ Fn×n is (r, s)-regularly rigid, if for every s-regularly sparse matrix S,
rank(M + S) ≥ r.

While every (r, s)-rigid matrix is also (r, s/n)-regularly rigid, we will show that for linear rank r = Ω(n)
the converse holds too (with a constant loss in the parameters).

Claim 3.24. If A is (εn, s/n)-regularly rigid, then A has rigidity RF
A(εn/2, εs/4).

Proof of Claim 3.24. Assume towards a contradiction that A = L + S, where rank(L) ≤ εn/2 and ‖S‖0 ≤
εs/4.
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Let I, J ⊆ [n] be the sets of indices of the εn/4 densest rows and εn/4 densest columns of S, respectively.
Let SI,J be an n× n matrix such that

SI,J)i,j =

{
Si,j if i ∈ I or j ∈ J
0 otherwise

and S′ = S − SI,J .
First, let us define L′ = L+SI,J . By sub-additivity of rank, we have rank(L′) ≤ rank(L) + rank(SI,J) ≤

εn. Second, by Markov’s inequality, the number of non-zero entries in each row and column of S′ is at most
s/n.

Thus, A = L+S = (L+SI,J) + (S −SI,J) = L′+S′, where rank(L′) ≤ εn and S′ is s/n-regularly rigid,
which contradicts the assumption on regular rigidity of A.

In order to prove Theorem 3.22, we need to upper bound the number of low-rank regularly-sparse matrices.
We will do this via the following encoding argument.

Lemma 3.25 (Row and column space bases encode the entire matrix). LetMr
n denote the set of matrices

M ∈ Fn×n2 of rank rank(M) = r. The mapping

φ : Mr
n → (F1×n)r × (Fn×1)r × [n]2r

defined as

φ(M) = (R,C, i1, . . . , ir, j1, . . . , jr) ,

is a one-to-one mapping, where R = (Rowi1(M), . . . ,Rowir (M)) and C = (Colj1(M), . . . ,Coljr (M)) are,
respectively, a row space basis and a column space basis of M ∈ Mr

n (taking, say, the lexicographically first
if multiple bases exist).

Proof of Lemma 3.25. We first claim that the intersection of R and C has full rank, i.e., that the submatrix
M ′ ∈ Fr×r obtained by taking rows i1, . . . , ir and columns j1, . . . , jr has rank r. This is a standard fact,
we include a proof for completeness. Assume for convenience that (i1, . . . , ir) = (1, . . . , r) and (j1, . . . , jr) =
(1, . . . , r). Next, assume towards contradiction that rank(M ′) = rank({Col1(M ′), . . . ,Colk(M ′)}) = r′ < r.
Since C is a column space basis of M , every column Coli(M) is a linear combination of vectors from C,
and in particular, every Coli(M)≤r is a linear combination of {Col1(M)≤r, . . . ,Colr(M)≤r}. Therefore,
the r × n submatrix M ′′ := (Col≤r1 (M), . . . ,Col≤rn (M)) has rank r′. On the other hand, the r rows of
M ′′ : Row1(M), . . . ,Rowr(M) were chosen to be linearly independent by construction. Thus, rank(M ′′) =
r > r′, which leads to a contradiction.

In order to show that φ is one-to-one, we show that R and C (together with their indices) uniquely
determine the remaining entries of M . We again assume for convenience that (i1, . . . , ir) = (1, . . . , r) and
(j1, . . . , jr) = (1, . . . , r). Consider any column vector Coli(M), i ∈ [n] \ [r]. By definition, Coli(M) =∑r
t=1 αi,t · Colt(M) for some coefficient vector αi := (αi,1, . . . , αi,r) ∈ Fr×1. Thus, in order to completely

specify all the entries of Coli(M), it suffices to determine the coefficient vector αi. But M ′ has full rank,
hence the equation

M ′αTi = Col≤ri (M)

has a unique solution. Therefore, the coefficient vector αi is fully determined by M ′ and Col≤ri (M). Thus,
the matrix M can be uniquely recovered from R,C and the indices {i1, . . . , ir}, {j1, . . . , jr}.

Lemma 3.25 gives us an asymptotically tight bound on the number of regularly-sparse matrices of low
rank.

Corollary 3.26 (E.g., [GRW18]). The number of s-regularly sparse matrices of rank r is bounded from above
by n6rs.
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Proof of Corollary 3.26. The function φ from Lemma 3.25 maps such matrices to (R,C, i1, . . . , ir, j1, . . . , jr),
where R and C are s-sparse bases. Therefore, the total number of such matrices is bounded from above by((

n

s

)r
· 2rs

)2

· n2r ≤ (nrs · 2rs)2 · n2r ≤ n6rs .

Now we are ready to finish the proof of Theorem 3.22.

Proof of Theorem 3.22. By Claim 3.24, it is sufficient to show that there exists an n1+ε-sparse matrix M
which is (n/500, s/n)-regularly rigid for some s = Ω(n1+ε). In particular, it suffices to show that there exists
such an nε-regularly sparse matrix M .

We will prove this by the following counting argument. Assume that every nε-regularly sparse matrix
M = L+ S, where rank(L) ≤ n/500, and S is s/n-regularly sparse. Then L is (s/n+ nε)-regularly sparse.
This implies that∣∣∣{S : S is s/n-regularly sparse}

∣∣∣× ∣∣∣{L : rank(L) ≤ n/500, L is (s/n+ nε)-regularly sparse}
∣∣∣

≥
∣∣∣{M : M is nε-regularly sparse}

∣∣∣ .
The right-hand side ∣∣∣{M : M is nε-regularly sparse}

∣∣∣ ≥ ( n
nε

)n
≥ nn

1+ε/10 .

By Corollary 3.26, for s = n1+ε/40, the left-hand side is upper bounded by((
n

≤ s/n

))n
· n6·(n/500)·(s/n+nε) ≤ n2s+6s/500+6n1+ε/500 � nn

1+ε/10 .

This contradiction implies that there exists an n1+ε-sparse matrix A with rigidity

RF2

A (n/1000) ≥ n1+ε/40 .

3.6 Rigidity from PCPs
Lecture 15In a recent breakthrough line of work, Alman and Chen [AC19], and Bhangale, Harsha, Paradise, and

Tal [BHPT20] gave a polynomial-time algorithm that uses an NP oracle, and outputs a matrix A of rigidity
RF
A(2Θ(2logn/ log logn)

) ≥ Ω(n2).

Theorem 3.27 ([AC19], [BHPT20]). There is a PNP machine that for infinitely many n, on input 1n,
outputs a matrix Mn ∈ Fn×n2 that has rigidity

RF2

Mn
(r) ≥ Ω(n2)

for r = 2Ω(logn/ log logn).

In fact, this theorem holds over any fixed finite field Fq, but for simplicity we will discuss only the case of
F2. Also, one can notice that the constructed matrices will actually belong to the complexity class FNP.2

In this section we will sketch the proof of Theorem 3.27, but first we will review some tools used in the
proof.

2The relation R(x, y) ∈ FNP if there exists a polynomial-time non-deterministic algorithm that for every x outputs y such
that R(x, y) = 1.
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3.6.1 Ingredients
Orthogonal Vectors In the Orthogonal Vectors (OV) problem, one is given two sets S, T of n vectors from
{0, 1}d, and the goal is to check whether there exist s ∈ S and t ∈ T such that 〈s, t〉 =

∑d
i=0 siti = 0. The

trivial brute force algorithm solves the OV problem in time O(n2d), and it can also be solved in time O(n2d).
Informally, the Orthogonal Vectors Conjecture states that these two algorithms are essentially optimal (the
former is better for large d, while the latter is better for small d). Formally, the conjecture claims that no
(randomized) algorithm can solve the OV problem in time n2−εpoly(d) for a constant ε > 0. In fact, a sub-
quadratic algorithm for OV would imply a better-than-2n algorithm for the Satisfiability problem [Wil05],
and, thus, would refute the celebrated Strong Exponential Time Hypothesis [IP01]. See [Vas18] for more
curious connections between the Orthogonal Vectors problem and other algorithmic problems.

For our application, we will be interested in the version of OV over F2: here two vectors s ∈ S and
t ∈ T are called orthogonal if 〈s, t〉2 =

∑d
i=0 siti = 0 mod 2. While OV over F2 can be solved in time

O(nd) [WY14], we will study a harder version of the problem over F2. In the #OV problem over F2 one
needs to count the number of orthogonal pairs (s, t) ∈ S × T . We will need a deterministic algorithm for
solving this problem in time n2−1/O(log(c)), where c = d/ log n. This algorithm for #OV over the integers is
due to Chan and Williams [CW16], and its simplified version over F2 is due to Alman and Chen [AC19]. In
the proof, we will use the two following results.

Theorem 3.28 (Rectangular matrix multiplication [Cop82, Wil14]). There is a deterministic algorithm that
multiplies two matrices A ∈ Fn×n0.172

and B ∈ Fn0.172×n using n2poly log n field operations.

Theorem 3.29 (Modulus-amplifying polynomials [BT94]). For every `, the following univariate polynomial
over Z of degree 2`− 1

F`(x) = 1− (1− x)`
`−1∑
i=0

(
`+ i− 1

i

)
xi

has the property that for every x ∈ Z,

x = 0 mod 2 =⇒ F`(x) = 0 mod 2`

x = 1 mod 2 =⇒ F`(x) = 1 mod 2`

We are ready to present a faster algorithm for the #OV problem over F2.

Theorem 3.30 ([CW16, AC19]). Let S, T ⊆ Fd2, |S| = |T | = n for some d = 2o(logn/ log logn). There is a
deterministic algorithm that solves #OV(S, T ) over F2 in time n2−1/O(log(c)) where c = d/ log n.

Proof of Theorem 3.30. Let b be a bucket size parameter to be chosen later. Let us arbitrarily partition the
sets S and T into n/b sets of size b:

S = S1 t S2 t . . . t Sn/b T = T1 t T2 t . . . t Tn/b ,

where |Si| = |Ti| = n/b for every i ∈ [n/b], and t denotes disjoint union. Note that

#OV(S, T ) =
∑

i,j∈[n/b]

#OV(Si, Tj) .

Thus, it will suffice to solve (n/b)2 #OV problems on sets of size b. We will set b = n1/O(log(c)), and
solve each of these smaller problems in amortized time poly(log n). This will lead to the total running time
(n/b)2poly(log n) = n2−1/O(log(c)).

Let X,Y ⊆ Fd2 be two sets of size |X| = |Y | = b, and let ` = 3 log2 b. We define the polynomial

P (X,Y ) = b2 −
∑
x∈X
y∈Y

F`(〈x, y〉) ,

where 〈x, y〉 is taken over Z, and F` is the modulus-amplifying polynomial from Theorem 3.29. Note that
by the definition of F`, F`(〈x, y〉) = 〈x, y〉2 mod 2`. Specifically, F`(〈x, y〉) = 0 mod 2` if x and y are
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orthogonal (over F2), and equals 1 mod 2` otherwise. Therefore, P (X,Y ) mod 2` exactly computes the
number of orthogonal pairs (x, y) ∈ X × Y . (Here we implicitly use that b2 � 2` due to our choice of `.)

Now it remains to efficiently compute the values of P (Si, Tj) for all i, j ∈ [n/b]. Observe that since F`
is a polynomial of degree less than 2`, F`(〈x, y〉) =

∑m
i=1 ci ·

∏
j∈Si xjyj for some integer m and some sets

S1, . . . , Sm ⊆ [d] of size |Si| < 2`. In particular, we have that m ≤
(
d
≤`
)
.

For any X ⊆ Fd2 of size |X| = b, let Φ(X) ∈ ZM be a vector defined as

Φ(X) =

∑
x∈X

c1 ·
∏
j∈S1

xj ,
∑
x∈X

c2 ·
∏
j∈S2

xj , . . .
∑
x∈X

cm ·
∏
j∈Sm

xj

 .

Similarly, for any Y ⊆ Fd2 of size |Y | = b, we define

Ψ(Y ) =

∑
y∈Y

∏
j∈S1

yj ,
∑
y∈Y

∏
j∈S2

yj , . . .
∑
y∈Y

∏
j∈Sm

yj

 .

Finally, note that

〈Φ(X),Ψ(Y )〉 =

m∑
i=1

∑
x∈X
y∈Y

ci ·
∏
j∈Si

xjyj =
∑
x∈X
y∈Y

F`(x, y) = b2 − P (X,Y ) .

Thus, given 〈Φ(X),Ψ(Y )〉, one can efficiently compute P (X,Y ). Now let us define two matrices A ∈ Zn/b×m
and B ∈ Zm×n/b as follows. The ith row of A is Φ(Si), and the ith column of B is Ψ(Tj) for i ∈ [n/b].
The product of these matrices C = AB ∈ Zn/b×n/b has 〈Φ(Si),Ψ(Tj)〉 as its (i, j)th entry. Therefore, given
C, one immediately computes P (Si, Tj) for all i, j ∈ [n/b] , then computes #OV(Si, Tj), and then returns
#OV(S, T ).

It remains to show how to pick the parameter b so that the matrix C could be computed efficiently.
Recall that d = c log n. By setting b = nε/ log c for a small enough constant ε > 0, we have that ` = 3 log b =
3ε log n/ log c, and

m ≤
(
d

≤ `

)
≤
(
de

`

)2`

≤
(
ce log n log c

3ε log n

)6ε logn/ log c

≤ (c log c/ε)
6ε logn/ log c

< n0.172 .

Since all the numbers in the matrix C are upper bounded by m22`, one can multiply the matrices A and B
over a field Fp for a prime p > m22`. In particular, all field operations in this field can be performed in time
poly(log p) = poly(`, logm) = poly(log n). Finally, by Theorem 3.28, A and B of size n/b ×m and m × n/b
can be multiplied over the field Fp in time (n/b)2poly(log n) = n2−2ε/ log cpoly log n = n2−2ε′/ log c for every
d < 2o(logn/ log logn).

Lecture 16

Time Hierarchy Theorems

Theorem 3.31 ([HS65]). For any time-constructible functions t, T satisfying t(n) · log t(n) = o(T (n))

DTIME[t(n)] ( DTIME[T (n)] .

Proof. For a proof see the slides or in [AB09a, Section 3.1].

We will use the classical Time Hierarchy Theorem for non-deterministic machines. To avoid ambiguity, let
us denote by NTime[f(n)] the class of languages L that have non-deterministic witnesses of length O(f(n))
and deterministic verifiers running in time O(f(n)). Formally, the language L ∈ NTime[f(n)] if there exists
a constant c > 0, a deterministic algorithm A such that x ∈ {0, 1}n is in L if and only if ∃y, |y| ≤ c · f(n),
and A(x, y) accepts in time c · f(n). We will say that a language L ∈ {0, 1}∗ is unary if L only contains
strings of the form 1n.
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Theorem 3.32 ([Coo72, Žák83]). For any time-constructible functions t, T satisfying t(n+ 1) = o(T (n))

NTime[t(n)] ( NTime[T (n)] .

Moreover, there exists a unary language L ⊆ {1}∗, L ∈ NTime[T (n)] \NTime[t(n)].

Proof. For a proof see the slides or in [AB09a, Section 3.2].

Corollary 3.33. There exists a unary language L ⊆ {1}∗, L ∈ NTime[2n] \NTime[2n/n].

Lecture 17

Rectangular PCPs We refer the reader to [AB09b, Section 11] for a gentle introduction to Probabilisti-
cally Checkable Proofs (PCP). Below we define all relevant parameters of PCPs.
Definition 3.34 (PCP Verifier). A PCP verifier for a language L ∈ {0, 1}∗ is a probabilistic algorithm
V that on input x ∈ {0, 1}n uses r bits of randomness and generates q queries I = (i1, . . . , iq), where each
ij ∈ [m], and a predicate D : {0, 1}q → {0, 1}. The verifier V for each input x will query the proof π ∈ {0, 1}m
at positions from I, and V will accept this proof if D(πI) = 1, and reject otherwise.

• Completeness:
If x ∈ L =⇒ ∃πPr[V accepts] = 1 .

• Soundness: For a parameter s ∈ (0, 1],

If x 6∈ L =⇒ ∀πPr[V accepts] < s .

• Randomness complexity: For every input x ∈ {0, 1}n, V uses at most r(n) bits of randomness.

• Query complexity: For every input x ∈ {0, 1}n, V makes at most q(n) queries to π.

• Verifier runtime: For every input x ∈ {0, 1}n, V runs in time t(n).

• Proof length: For every input x ∈ {0, 1}n, x ∈ L, there exists a correct proof π of length at most
m(n).

• Decision complexity: For every input x ∈ {0, 1}n, the predicate D can be computed in time d(n).

• Smoothness: For every input x ∈ {0, 1}n, for an index i ∈ [m], let Qx(i) be the probability that V
queries the bit i of π on a random query number k ∈ [q]:

Qx(i) = Pr
R,k

[ik = i] .

V is smooth if for every x ∈ {0, 1}n, i ∈ [m], j ∈ [m], Qx(i) = Qx(j).

• τ-rectangular:3 Let the length of the proof π be a perfect square: m = `2. We will think of π
as a matrix π ∈ {0, 1}`×`. The r random bits R ∈ {0, 1}r of V are partitioned into three groups:
Rshared ∈ {0, 1}τr, Rrow, Rcol ∈ {0, 1}(1−τ)r/2. Given an input x ∈ {0, 1}n and a proof π ∈ {0, 1}`×`,
the verifier V works as follows.

1. Samples Rshared∈{0,1}τr . Uses x and Rshared to generate a predicate D : {0, 1}q+p → {0, 1}, and a
constant number p of linear functions C1, . . . , Cp of all randomness R ∈ {0, 1}r.

2. Samples Rrow ∈ {0, 1}(1−τ)r/2. Uses x, Rshared, and Rrow to generate the first indices of the q
queries to π: irow1 , . . . , irowq .

3. Samples Rcol ∈ {0, 1}(1−τ)r/2. Uses x, Rshared, and Rcol to generate the second indices of the q
queries to π: icol1 , . . . , icolq .

3For ease of exposition, we merge two different definitions of τ -rectangular and τ -randomness-oblivious predicates
from [BHPT20] into the definition of τ -rectangular verifiers. Moreover, we fix some parameters from those definitions. These
simplifications are sufficient for our application, but we refer the reader to [BHPT20] for constructions of more general PCPs.
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4. Queries π ∈ {0, 1}`×` at positions (irow1 , icol1 ), . . . , (irowq , icolq ), receives bits b1, . . . , bq ∈ {0, 1}q.
5. Evaluates the functions C1(R), . . . , Cp(R).
6. Outputs the result of the decision predicate D(b1, . . . , bq, C1(R), . . . , Cp(R)).

Now we present without a proof a construction of a PCP from [BHPT20] which simultaneously achieves
essentially optimal values of all of these parameters.

Theorem 3.35 ([BHPT20]). For any L ∈ NTime[2n] and constants s ∈ (0, 1/2) and τ ∈ (0, 1), L has a
PCP verifier with

• Soundness s;

• Randomness complexity r(n) = n+O(log n);

• Constant query complexity and decision complexity;

• Verifier runtime t(n) = 2τn;

• Proof length m(n) = 2n · poly(n);

• V is smooth;

• τ -rectangular.

Lecture 18

Corollary 3.36 (of Theorem 3.30). Let A ∈ F2n× d and B ∈ Fdn2 be two matrices. There is a deterministic
algorithm that computes the number of zeros (and the number of ones) in AB in time n2−1/O(log(c)) where
c = d/ log n.

3.6.2 Proof of Theorem 3.27
Proof of Theorem 3.27. By Corollary 3.33, there exists a unary language L ⊆ {1}∗, L ∈ NTime[2n] \
NTime[2n/n]. By Theorem 3.35, L has a rectangular PCP verifier V with a proof of length m(n) = `(n)2.
We now describe a PNP algorithm A that for infinitely many inputs 1N outputs rigid matrices M ∈ FN×N2 .
We will only consider (infinitely many) values of N such that (i) N = `(n) for some n, and (ii) the string
1n ∈ L. For each such N , A outputs the proof π ∈ {0, 1}`(n)×`(n) for 1n ∈ L.4 It remains to show that (i)
A can be implemented in PNP, and (ii) A outputs a rigid matrix infinitely often.

On input 1N , the algorithm A guesses π ∈ {0, 1}`×` one bit at a time and uses the NP oracle to verify
the guesses. Thus, A(1N ) rune in time poly(`2) = poly(N2) = poly(N).

Let q and s be the query complexity and soundness constants of the PCP verifier V , and let ε = (1−s)/q.
Let us now show that the output of A is rigid infinitely often. Assume, towards a contradiction, that there
exists n0 such that for all n > n0, if 1n ∈ L, then some proof π ∈ {0, 1}N×N is not rigid: RF2

π (Γ) < εN2

for Γ = 2O(logN/ log logN). Then there exist matrices A ∈ FN×Γ
2 , B ∈ FΓ×N

2 such that ‖π − AB‖0 ≤ εN2.
Since V is a smooth verifier, it queries each of the positions of π with equal probability. By union bound,
it queries one of the εN2 positions where π and AB differ only with probability ≤ qε = (1− s). Therefore,
even given AB as a proof (instead of π), the probability of acceptance of this proof by V is ≥ s, while for
every wrong proof π′, the probability of acceptance is < s.

It remains to show that one can compute the probability of acceptance of AB by V in non-deterministic
time O(2n/n) (this will contradict the initial assumption that L 6∈ NTime[2n/n]). First, we can guess the
matrices A ∈ FN×Γ

2 , B ∈ FΓ×N
2 in timeO(NΓ). Then we brute force the shared randomnessRshared ∈ {0, 1}τr

of V , and for each Rshared do the following.

1. Compute the predicate D : {0, 1}q+p → {0, 1}, and the linear functions C1, . . . , Cp for a constant p.

2. For each query index k ∈ [q], we define a matrix A(k) ∈ F2(1−τ)r/2×Γ
2 as follows. For each row randomness

Rrow ∈ {0, 1}(1−τ)r/2, we set the corresponding row of A(k) to be the irowk row of A.

4If there are several proofs π ∈ {0, 1}`(n)×`(n), then we take the lexicographically first one.
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3. For each query index k ∈ [q], we define a matrix B(k) ∈ FΓ×2(1−τ)r/2

2 as follows. For each column
randomness Rcol ∈ {0, 1}(1−τ)r/2, we set the corresponding column of B(k) to be the icolk column of B.

4. Finally, for j ∈ [p], we define vectors Aq+j ∈ F2(1−τ)r/2×1
2 and B ∈ F1×2(1−τ)r/2

2 such that the linear
function Cj(Rrow, Rcol) = (Aq+jBq+j)Rrow,Rcolumn

.

5. It is now easy to verify that for every randomness R = (Rshared, Rrow, Rcol), V accepts if and only if

D

((
A(1)B(1)

)
Rrow,Rcol

,
(
A(2)B(2)

)
Rrow,Rcol

, . . . ,
(
A(q+p)B(q+p)

)
Rrow,Rcol

)
= 1 .

6. Recall that D : {0, 1}q+p → {0, 1} is a function of a constant number of inputs computable in constant
time. In particular, we can compute the Fourier coefficients of D in constant time. From the Fourier
representation of

D(y1, . . . , yq+p) =
∑

K⊆[q+p]

D̂(K)(−1)⊕i∈Kyi ,

in order to compute the expected value of

D

((
A(1)B(1)

)
Rrow,Rcol

,
(
A(2)B(2)

)
Rrow,Rcol

, . . . ,
(
A(q+p)B(q+p)

)
Rrow,Rcol

)
for random Rrow, Rcol, we can just compute the expected value of all ⊕i∈K

(
A(i)B(i)

)
Rrow,Rcol

. This

value is exactly the fraction of ones in the product A′B′ where A′ ∈ F2(1−τ)r/2×|K|Γ
2 and B′ ∈

F|K|Γ×2(1−τ)r/2

2 are concatenations of A(i) and B(i) for i ∈ K.

Recall that t denotes the running time of V . The running time of guessing A and B is O(NΓ), the running
time of step 1 is O(t), the running time of steps 2–4 is O(2(1−τ)r/2(t+ Γ)). By Corollary 3.36, the running
time of step 6 is

(
2(1−τ)r/2

)2−1/ log(Γ(q+p))
. Since these steps of the algorithm are repeated 2τr times, the

total running time is

O

(
NΓ + 2τr

(
2(1−τ)r/2(t+ Γ) +

(
2(1−τ)r/2

)2−1/ log(Γ(q+p))
))

.

Recall that the rigidity rank parameter Γ = 2Θ(logN/ log logN), and from the PCP parameters from Theo-
rem 3.35, N = ` =

√
m = 2n/2poly(n), r = n+ O(log n), q, p, τ = Θ(1). Then the running time is bounded

from above by the term

O

(
2τr
(

2(1−τ)r/2
)2−1/ log(Γ(q+p))

)
= O

(
2r−(1−τ)r/(2 log Γ)

)
= O(2n/n)

for some Γ = 2Θ(logN/ log logN). Thus, the language L can be decided in non-deterministic time O(2n/n)
which contradicts the assumption that L 6∈ NTime[2n/n].

3.7 Summary
Recall that for circuit lower bounds one needs to find a matrix A ∈ Fn×n with rigidity RF

A(εn) ≥ n1+δ. In
the table below we summarize the semi-explicit constructions of rigid matrices.
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construction rigidity running
time

reference

Vandermonde with algebraically
independent entries

R(
√
n) ≥ δn2 NA Theorem 3.2

square roots of primes R(εn) ≥ δn2 NA Theorem 3.6

brute force R(εn) ≥ n2/ log n 2n
2

section 1.5

explicit R(r) ≥ n2

r · log n
r poly(n) chapter 2

Hankel R(r) ≥ n3

r2 logn 2n Theorem 3.13

sub-exponential R(n0.5−ε) ≥ n2/ log n 2n
1−ε

Corollary 3.20

sparse R(εn) ≥ n1+δ 2n
1+δ logn Theorem 3.21

PCP R(2logn/ log logn) ≥ δn2 PNP Theorem 3.27

Table 3.1: Summary of semi-explicit rigidity lower bounds.
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Chapter 4

Limitations

Lecture 19Matrix rigidity lower bounds are a tool for proving hardness of computation, but in this chapter we focus
on hardness of proving rigidity lower bounds. Despite more than forty years of research, the best known
explicit lower bounds on rigidity for the interesting case of r = Ω(n) are still only linear in n. The results of
the last few years partially explain this barrier: Apparently, many of the known approaches are not capable
of proving stronger bounds, and some matrices previously conjectured to be rigid are not sufficiently rigid
for circuit lower bounds.

4.1 Limitation of untouched minor method
Recall that the explicit Ω

(
n2

r log n
r

)
lower bound of [SSS97] was obtained by arguing that there exists a

constant c > 0 such that for any log n ≤ r ≤ n and any c · n
2

r log n
r entries in an n × n matrix, there must

be an r× r submatrix untouched by these entries. Thus, the rigidity lower bound immediately follows from
explicit constructions of matrices whose r × r submatrices are all full rank. This method of constructing
rigid matrices is called the untouched minor method.

In this subsection, we are going to give a simple proof showing that this Ω
(
n2

r log n
r

)
lower bound is the

best lower bounds that the untouched minor method can prove. Therefore, for better lower bounds we have
to use different methods.

Theorem 4.1 ([Lok00, Lok09]). There exists a constant c > 0 such that for any large enough n and
log n ≤ r ≤ n, there exists a set S of c · n

2

r log n
r entries of an n×n matrix such that its every r×r submatrix

intersects S.

Proof of Theorem 4.1. For any n, r, let U = [n] × [n] be the set of entries in an n × n matrix and V =
{X × Y : X,Y ⊆ [n], |X| = |Y | = r} be the set of r × r submatrices. Consider a bipartite graph G with
vertex sets U and V . For any entry (i, j) ∈ U and submatrix X × Y ∈ V , there is an edge in G between
them if (i, j) ∈ X × Y . In order to prove this theorem, it suffices to show that there exists a constant c > 0

such that for any large enough n and log n ≤ r ≤ n, there exists S ⊆ U of size at most c · n
2

r log n
r such that

the set S touches all vertices in V .
There are two simple ways of proving the existence of such covering set S: a non-explicit construction via

the probabilistic method, and an explicit construction via a greedy algorithm. Here, we give a short proof
using the probabilistic method.

We pick a random set of s vertices in U for a parameter s to be chosen later, and we will show that the
probability of having an uncovered vertex in V is strictly less than 1. This will imply that there exist a
choice of s vertices in U that cover all vertices of V .

For a vertex v of a graph G = (V,E), by N(v) we denote the neighborhood of v, i.e., N(v) = {u : (v, u) ∈
E}. In the bipartite graph G, every vertex in V has degree d = r2, and, thus, for a fixed v ∈ V , the
probability that v is not covered by a random vertex in U is

Pr
u∈U

[v 6∈ N(u)] = 1− d

|U |
.

33



Matrix Rigidity Sasha Golovnev November 2, 2020

By union bound, we have

Pr
u1,u2,...,us∈U

[∃v ∈ V, v /∈ N(ui) ∀i ∈ [s]] ≤ |V | ·
(

1− d

|U |

)s
.

The right hand side of the above inequality is less than 0.1 if we pick

s = O

(
|U |
d

log |V |
)

= O

(
n2

r2
log

((
n

r

)2
))

= O

(
n2

r
log

n

r

)
.

We conclude that there exists a set S ⊆ U of size at most s = c · n
2

r log n
r such that every vertex in V is

covered by S.

4.2 Non-rigid super regular matrices
In Section 4.1, we showed that one cannot prove strong rigidity lower bounds by arguing that a sparse matrix
does not touch some r×r submatrix. Apparently, an even stronger limitation holds for the untouched minor
method: there exists a matrix A ∈ Fn×n such that all square submatrices of all sizes of A have full rank,
yet RF

A(εn) < n1+o(1) for every constant ε > 0.
Definition 4.2. A matrix A ∈ Fn×n is super regular if all of its square submatrices have full rank.

Super regular matrices were used for super-linear lower bounds against circuits of bounded depth [Pip77,
DDPW83, AP94, Pud94, Lok95, RTS00, RS03, Che08] (and they were also used in section 2.3 for proving
the best know rigidity lower bounds). In this section we show a result of Valiant [Val75] showing that some
super regular matrices have low rigidity (and, in fact, can be computed by circuits of linear size).

The study of super regular matrices is closely related to the study of superconcentrator graphs.
Definition 4.3 (Superconcentrator). Let G be a graph, and let I and O be two disjoint subsets of vertices
of G called the inputs and outputs, respectively. G is a superconcentrator if for any 1 ≤ k ≤ min{|I|, |O|},
I ′ ⊂ I and O′ ⊆ O of size |I ′| = |O′| = k, there exist k vertex-disjoint paths from I ′ to O′. The size of a
superconcentrator G is the number of edges in G.

The linear map given by a super regular matrix M can be only computed by a linear circuit whose graph
G is a superconcentrator. Indeed, assume that for some set of inputs I ′ ⊂ I and some set of outputs O′ ⊆ O
of G, where |I ′| = |O′| = k, there are only k − 1 vertex disjoint paths from I ′ to O′. By Menger’s theorem
(Theorem 3.3.1 in [Die05]), there exists a vertex cut of size k − 1: nodes C = {c1, . . . , ck−1} of G such that
the outputs O′ depend on the inputs I ′ only through the nodes C. In particular, the k × k submatrix of
M corresponding to I ′ ×O′ is generated by the k− 1 columns describing the linear combinations computed
in the nodes C. Therefore, this submatrix has rank at most k − 1 which contradicts super regularity of M .
This implies that super regular matrices require superconcentrator circuits. Later in this section we will
show that some form of the opposite statement holds as well: given a superconcentrator one can construct
a super regular matrix with related rigidity parameters. Valiant conjectured that superconcentrators must
have super-linear size, and, thus, any super regular matrix would require circuits of super-linear size. (Note
that we know explicit super regular matrices, see, e.g., section 2.3.) But then Valiant himself found a
counterexample [Val75] to his conjecture: a superconcentrator of size O(n).

Next, we will show that there exist superconcentrators of linear size, and then we will see that there exist
super regular matrices with low rigidity. As a building block we will use another pseudorandom object—
bipartite expanders.
Definition 4.4 ((n,m)-bipartite expander). For any n,m ∈ N a (n,m)-bipartite expander is a bipartite
graph En,m with vertex sets U and V , where |U | = n and |V | = m, such that for any S ⊆ U , |S| ≤ n

2 ,
|N(S)| ≥ |S|.

A simple probabilistic arguments shows that bipartite expanders exist, we defer the proof of this lemma
until the end of this section.

Lemma 4.5. For any large enough n and m = d 3n
4 e, there exists an (n,m)-bipartite expander En,m with at

most 10n edges.
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Theorem 4.6 (Superconcentrators of linear size [Val75]). For any n ∈ N large enough, there exists a
superconcentrator Gn of size O(n).

Proof of Theorem 4.6. We will construct a superconcentrator by induction on n. For n ≤ C for a large
constant C, we observe that a complete bipartite graph with n inputs and n outputs is a superconcentrator.
For n ≥ C, we assume that there exists a superconcentrator Gm with m inputs, m outputs, and of size C ′m,
where m = d 3n

4 e and C
′ = max{C, 85}.

Now, we define Gn, the superconcentrator with input and output vertex sets In = [n] and On = [n], from
Gm as follows.

1. Connect u ∈ In and v ∈ On if u = v.

2. Add a copy of the graph Gm with the input and output vertex sets Im and Om.

3. Connect In and Im by an (n,m)-bipartite expander En,m. Similarly, connect On and Om by an
(n,m)-bipartite expander.

Gn has edges of three types, and the size of Gn (the number of edges in it) can be upper bounded as
follows.

size(Gn) ≤ n+ size(Gm) + 2 · |En,m| ≤ 21n+
3C ′n

4
≤ C ′n ,

where we used Lemma 4.5 for a bound on the size of (n,m)-bipartite expanders, and the bound C ′ ≥ 85.
Therefore, Gn indeed has linear size. It remains to show that G′ is a superconcentrator.

We will show that for any k ∈ [n] and S ⊆ In, T ⊆ On where |S| = |T | = k, there are k vertex disjoint
paths from S to T . Let us consider two cases: (a) k ≤ n

2 and (b) k > n
2 .

(a) When k ≤ n
2 , by the expander property, we know that S has at least k neighbors S′ in Im, and T has

at least k neighbors T ′ in Om. Next, since Gm is a superconcentrator, we know that there are k vertex
disjoint path from S′ to T ′. This gives us k vertex-disjoint paths from S to T .

(b) When k > n
2 , let S∆ = S\(S ∩ T ) and T∆ = T\(S ∩ T ). We have that |S∆| = |T∆| ≤ n

2 and from the
case (a), there are |S∆| vertex disjoint paths from S∆ and T∆. Also, by the construction of Gn, there
are edges connecting both sides of S ∩T . Thus, there are |S∆|+ |S ∩T | = k vertex-disjoint paths from
S to T .

This finishes our construction of superconcentrators of linear size. We note that the only non-explicit
part of the presented construction is the bipartite expander graphs, and that this part can actually be made
explicit, too.

For completeness, we conclude this section with a proof of Lemma 4.5.

Proof of Lemma 4.5. We will prove this lemma using the probabilistic method. Let us sample a random
bipartite graph with n left vertices and m = d 3n

4 e right vertices, where each left vertex has 10 random
neighbors on the right. It suffices to show that with non-zero probability, for all 2 ≤ k ≤ n

2 , any S ⊂ [n] of
size |S| = k has |N(S)| ≥ k.

For a fixed S ⊆ [n] of size |S| = k, the probability of |N(S)| < |S| is

Pr [∃T ⊆ [m], |T | < k, N(S) ⊆ T ] ≤ Pr [∃T ⊆ [m], |T | = k, N(S) ⊆ T ]

≤
(
m

k

)
·
(
|T |
m

)10|S|

≤
(
m

k

)
·
(
k

m

)10k

.

Thus, the probability that there exists an S ⊆ [n], of size |S| ≤ n
2 that has |N(S)| < |S|, is at most

n/2∑
k=2

(
n

k

)
·
(
m

k

)
·
(
k

m

)10k

≤
n/2∑
k=2

(
e2nmk10

k2m10

)k
≤

n/2∑
k=2

(
e2
(

1
2

)8(
3
4

)9
)
≤

n/2∑
k=2

(
1

2

)k
< 1 .

From this, we conclude that there exist (n,m)-bipartite expanders.
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4.3 Rigidity of codes
Lecture 20In section 2.1, section 2.2, and section 2.3, we showed that every generator matrix M ∈ Fn×k of a good

linear code (i.e., a code that has dimension and distance k, d = Θ(n)) has rigidity RM (r) ≥ n2

r · log n
r . It

is natural to conjecture that good codes are even more rigid, and, perhaps, are rigid enough to guarantee
super-linear circuit lower bounds. In fact, in Lemma 4.7 we will show that every good code (and even any
subspace of Fn of dimension Ω(n)) has a generator matrix A of high rigidity RA(εn) ≥ Ω(n2). On the other
hand, in Theorem 4.9 we will refute this conjecture by presenting a generator matrixM of a good linear code
that has low rigidity. Therefore, while every linear code has a rigid generator matrix, it is not true that all
generator matrices of good codes are rigid. (Note that the results of section 2.1, section 2.2, and section 2.3
apply essentially to all generator matrices of linear codes.)

Lemma 4.7. Let C ⊆ Fn be a subspace of dimension k = Θ(n). There exists a generator matrix A ∈ Fn×k
of C of rigidity

RF
A(εk) ≥ Ω(n2)

for a constant ε > 0.

Proof of Lemma 4.7. The subspace C of dimension dim(C) = k has k free coordinates F ⊆ [n] that can take
any value in Fk. Therefore, for any matrix B ∈ Fk×k, there exists a generator matrix A ∈ Fn×k of C whose
projection to the coordinates F equals B. In particular, for any B ∈ Fk×k, there exists a generator matrix
A ∈ Fn×k such that RF

A(r) ≥ RF
B(r) for every r. The lemma statement now follows from the observation

that a random B ∈ Fk×k matrix has rigidity RF
B(r) ≥ Ω(k2) for some r = εk. (See Theorem 1.10 and

Problem 1 in Homework 2.)

We will need the following bound on the probability of having an odd sum of independent Bernoulli
variables.

Lemma 4.8. For any n ∈ N and p ∈ [0, 1], let X be a sum of n independent Bernoulli random variables
with mean p, then

Pr [X is odd] =
1

2
− 1

2
(1− 2p)n ≥ 1

2
− 1

2
e−2pn.

Proof of Lemma 4.8.

Pr [X is odd] =

dn/2e∑
k=1

(
n

2k − 1

)
p2k−1(1− p)n+1−2k

=
1

2
(((1− p) + p)

n − ((1− p)− p)n)

=
1

2
− 1

2
(1− 2p)n .

Now we are ready to present the main result of this section: There exists a generator matrix of a linear
code of linear dimension and arbitrarily large distance that has rigidity O

(
n2

r · log n
r

)
for any value of the

rank parameter Ω(log n) ≤ r ≤ O(n).

Theorem 4.9 ([Dvi16]). For every δ > 0 and large enough n ∈ N, there exists a generator matrix M ∈ Fn×k2

of a linear code C ⊆ Fn2 of dimension k = Θ(n) and distance d = (1/2− δ)n of rigidity

RF2

M (r) ≤ O
(
n2

r
· log

n

r

)
for every Ω(log n) ≤ r ≤ O(n).
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Proof of Theorem 4.9. In Proposition 2.2, we saw linear codes with optimal distance and dimension param-
eters. Now we will need a linear code with essentially optimal value of redundancy : we start with a linear
code C ⊆ Fm2 of dimension dim(C) = k = Θ(m) and distance 1 ≤ d < m/2 where the ambient dimension
m = k+r for r = O(d log(k/d)). (Here r = m−k is the redundancy of C, see Lemma 4.10 for a construction
of such codes.) Let us pick any systematic generator matrix G ∈ Fm×k2 of C, i.e., G of the form

G =

(
Ik
G′

)
,

where G′ ∈ Fr×k2 .
Let B ∈ Fn×m2 be a random matrix where each entry is an independent random Bernoulli variable with

mean c/d for c = O
(
log( 1

δ )
)
and n = Θ(k/δ2). We claim that with positive probability (over the choice of

B) the matrix BG ∈ Fn×k2 generates a good linear code and is not rigid. Namely, we will show that with
probability at least 3/4, BG generates a good code, and with probability at least 3/4, BG is not rigid.

First, we show that with probability at least 3/4, the matrix BG generates a good linear code. Consider
an arbitrary non-zero codeword yx = BGx for x ∈ Fk2\{0}. By the minimum distance property of G, Gx
has at least d non-zero entries. Thus, each entry of yx is a sum of at least d Bernoulli random variables with
mean c/d. From Lemma 4.8, each entry of yx is non-zero with probability at least 1

2 −exp (−Ω(c)) ≥ 1
2 −10δ

by our choice of c. Thus, by the Chernoff bound, the number of non-zero coordinates of yx is at least
‖yx‖0 ≥

(
1
2 − δ

)
· n with probability at least 1 − 2−Ω(nδ2) ≥ 1 − 2−2k by our choice of n. By union bound,

we conclude that all 2k − 1 non-zero codewords of BG have Hamming weight of at least
(

1
2 − δ

)
· n with

probability 1− 2k · 2−2k > 3/4.
Now we show that with probability at least 3/4, the matrix BG is not rigid. Let us denote the first k

columns of B ∈ Fn×m2 by B1, and the remaining columns of B by B2. Then

BG =
(
B1 B2

)( I
G′

)
= B1 +B2G

′ .

We will show that B2G
′ has low rank, and B1 is sparse with probability 3/4. Observe that the rank of B2G

′

is at most r = m− k as B2 ∈ Fn×r2 . Finally, the sparsity of B1 is the sum of nk random Bernoulli variables
with mean c/d each. Thus, by Markov’s inequality, ‖B1‖0 ≤ 4nkc

d with probability at least 3/4.
We conclude that with probability at least 1/2, BG generates a linear code in Fn of dimension k = Θ(n)

and distance
(

1
2 − δ

)
n, but RF2

BG(r) ≤ 4nkc/d. Since r = O(d log(k/d)) and k = Θ(n), we conclude that

RF2

BG(r) ≤ O
(
n2

r
· log

n

r

)
for every Ω(log n) ≤ r ≤ O(n).

We conclude this section with a construction of linear codes matching the Gilbert-Varshamov bound.

Lemma 4.10. For every d < n/2, there exists a linear code C ⊆ Fn2 of dimension k and distance d such
that the redundancy of C is

r = n− k = O
(
d log

(n
d

))
.

Proof of Lemma 4.10. Let us pick k basis vectors from Fn2 one by one to generate a space where all pairwise
distances are greater than d. To add a basis vector number i, we pick an arbitrary vector on distance more
than d from all 2i−1 vectors that lie in the currently constructed space. Therefore, we can construct such a
code as long as 2k−1

(
n
≤d
)
< 2n. In particular, there exists a code with distance d and redundancy

r = n− k ≤ log

(
n

≤ d

)
≤ O

(
d log

(n
d

))
.
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