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- Classes: MW 9.30am-10.45am, Zoom

- Office Hours: M 10.45am-11.45am, Zoom
- Homework and Project

- Slides and Video

- email: alex.golovnevagmail.com
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- Definitions and Examples

- Explicit Constructions

- Semi-explicit Constructions
- Limitations

- Applications



DEFINITION AND EXAMPLES
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RIGIDITY. DEFINITION

Definition
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0 <r <n. The rigidity of A over IF, denoted by
R, (r), is the Hamming distance between A
and the set of matrices of rank at most r.



RIGIDITY. DEFINITION

Definition

Let IF be a field, A € F™" be a matrix, and

0 <r < n. The rigidity of A over IF, denoted by
R, (r), is the Hamming distance between A
and the set of matrices of rank at most r.
Formally,

RE(r) = ' Cllo .
A() rankgli—nC)ng HO
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EXAMPLES

Let n be a multiple of 2r, and let
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BOUNDS ON RIGIDITY

- Found a simple explicit matrix with rigidity

R, (r) =Q (n_2> .

p
- The best known bound

RE (1) — (n2 |og(l’7/l’)) |

r

- What we need (for circuit lower bounds) is
Ry, (r) =n"* for r=Q(n).

- (Even Ry, (r) = w(n) for r = Q(n) would give
new circuit lower bounds).
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WHY RIGIDITY?

- Beautiful question between algebra and
geometry

- Many applications to Communication
Complexity, Data Structures, etc

- One of the very few tools for Circuit Lower
Bounds
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BOOLEAN CIRCUITS

f:{0,1}" — {0,1}"

Inputs:

X1y .., Xn, 0,1
Gates:
binary
functions
Fan-out:
unbounded
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Lower Bound [Sha1949]

Counting shows that almost all functions of n
variables have circuit size at least

2"

Upper Bound [Lup1958]
Every function can be computed by a circuit of
size

2"
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EXPLICIT BOUNDS

Most functions have exponen-
tial circuit complexity

We want to prove super-
polynomial lower bounds
(for a function from NP)

We can prove only ~3n lower

bounds
(even for a function from ENP)
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WHAT WE CAN PROVE

- Depth 2: CNF/CNF. Even @, requires circuits of
; N
size Q(2"). J:Cagm
W\

I
94
240
- Depth 1.9 log n]\Knovv functions that cannot be
computed.  \=D N> - oo

. Constant depth d. Lower bounds 2",

- Depth 2log n. Nothing better than ~3n.
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Problem
Prove a lower bound of 10n against circuits of
depth 10 log n.

More generally, a lower bound of w(n) against
circuits of depth O(log n).

Valiant [Val77] gives us an amazing tool to study
such circuits.
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ANOTHER PROBLEM ON THE FRONTIER

Problem

Prove a lower bound of w(n) against linear
circuits of depth O(logn).

Valiant's [Val77] tool for these circuits is even
nicer!
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LINEAR CIRCUITS

- A linear map computes Mx for input x € "
where M € [Fm*"

- A linear circuit only contains gates that, for
Inputs x and y, compute ax + Sy for some
a, e
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COMPLEXITY OF LINEAR OPERATORS

- Linear circuits compute only linear functions

- We don't study linear functions with 1 output
as they have circuit complexity < n even in
depth logn

- A random linear map with n outputs has
complexity n?/logn

- The best lower bound we can prove against
linear circuits with n outputs is 3n — o(n)
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ANOTHER PROBLEM ON THE FRONTIER

Problem

Prove a lower bound of w(n) against linear
circuits of depth O(logn).

- Incomparable to the previous problem
(bounds against non-linear circuits):

- Weaker computational model

- But fewer problems to prove lower
bounds for.



CIRCUITS AND RIGIDITY




RIGIDITY IMPLIES CIRCUIT LOWER BOUNDS

Theorem (Val77)

Let F be a field, and A € F"*" be a family of
matrices for n € N.

If RE(en) > n' for constant ¢, > 0, then any
O(log n)-depth linear circuit computing x — Ax
must be of size w(n).



Rigidity for rank n/100 and
sparsity n'"" implies
super-linear circuit lower
bounds



DEPTH REDUCTION

Lemma (EGS75)

Let G be an acyclic digraph with s edges and
of depth d = 2%

There exists a set of s/ logd edges in G such
that after their removal, the longest path in G
has length at most d/2.



DEPTH FUNCTION

6=V, E) /

D:V—4{0,1,...,d} 1sadepth function for G If
forany (a,b) € E, D(a) < D(b).
Claim

Depth of G < d Iff there exists a depth
function D:V — {0,1,...,d — 1} for G.



forany (a,b) € E, D(a) < D(b).
Claim

Depth of G < d iff there exists a depth
function D : V — {0,1,...,d — 1} for G.
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DEPTH REDUCTION. PROOF

Lemma (EGS75)

Let G be an acyclic digraph with s edges and
of depth d = 2%

There exists a set of s/ logd edges in G such
that after their removal, the longest path in G
has length at most d/2.



Let G be an acyclic digraph with s edges and
of depth d = 2.

Lemma (EGS75) D ¢ '\/ ﬂ g 0 I ’Dl = [3
)=
There exists a set of s/ log d edges in G such g h— ( V E)

that after their removal, the longest path in G
has length at most d/2.
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