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GOAL

- Know: n? algebraically independent entries
form rigid matrix

- Previous class: just n algebraically
Independent entries are sufficient for
(moderate) rigidity
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Construction I: n algebraically
Independent entries



MAIN THEOREM

Theorem
Let xq,...,Xn be algebraically independent
over Q and Vi; = X", Then for every

Vn

RE(r) > n(n—100-r%)/2.
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PROOF OQUTLINE

- Define a complexity measure (dim?>)
- Prove that for low rank(L) = low dim:>(L)

+ Prove that for any sparse S, dim?>(V — S) is high

\( £S+L = V' is eigidl



SHOUP-SMOLENSKY DIMENSION

Definition

Foranyt,n e Nand A € C"™". The
t-Shoup-Smolensky dimension of A, dim:>(A),
Is the dimension of the vector space over Q
spanned by product of t distinct elements

of A.
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Construction II: n* linearly
Independent entries



MAIN THEOREM

Theorem

Let A € C"™" be a matrix with square roots of

n* distinct primes as its entries. For any

n

R5(r) > n(n —16r).



Theorem

Let A € C"™" be a matrix with square roots of
n® distinct primes as its entries. For any

1<r<4,

R (r) > n(n —16r).
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SS DIMENSION OF L

Recall from last class:
Lemma
Forany t e N, and L € C"™" of rank r = rank(L),

2
dim3S(L) < (”rj t) |
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SS DIMENSION OFA — S

Lemma

Let A be an n x n matrix with square roots of
n* distinct primes as its entries, and S € C"*"
such that ||S|lo < s. Forany 1< s,t < n?,

2 _
dim3S(A — 5) > (” : S).



BESICOVITCH THEOREM
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Theorem (Besicovitch)

Let aq,a,,...,am be m distinct square roots of

square-free integers, then they are all linearly
Independent over Q.



Lemma

Let A be an n x n matrix with square roots of
n? distinct primes as its entries, and S € C"™"
such that ||S|lo < s. Forany 1< s,t < n?

2 —
dim?*(A — S) > (” : 5)_
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Theorem

Let A € C"™" be a matrix with square roots of
n? distinct primes as its entries. For any
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Shoup-Smolensky Dimension
and Circuit Lower Bounds
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against linear circulits



RIGIDITY AND CIRCUITS

- We study rigidity to prove circuit lower bounds
against linear circulits

- Rigidity for rank n/100 and sparsity n'"!
Implies super-linear circuit lower bounds



RIGIDITY AND CIRCUITS

- We study rigidity to prove circuit lower bounds
against linear circulits

- Rigidity for rank n/100 and sparsity n*"'
Implies super-linear circuit lower bounds

- Shoup-Smolensky dimension can be directly
used to prove a super-linear circuit lower
bound against such circuits



RIGIDITY AND CIRCUITS

- We study rigidity to prove circuit lower bounds
against lipear circuits

- Rigidity for rank n/100 and sparsity n*"'
Implies super-linear circuit lower bounds

- Shoup-Smolensky dimension can be directly

used to prove a super-linear circuit loQ/ver
bound against such circuits [{-lgh

- Alas, for linear functions that are not
completely explicit



SHOUP-SMOLENSKY LOWER BOUND

xeC ‘566"
9= A-x

Theorem

Let A € C"™" be a matrix with square roots of
n* distinct primes as its entries. Any linear

circuit computing x — Ax must have size at
least

s> Q(n*/logn).



PROOF OQUTLINE

- Prove that our matrix A has high dim%}
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PROOF OUTLINE

+ Prove that our matrix A has high dim>>

- Prove that small circuits compute x — Bx only
for B with low dim>”



PROOF OUTLINE

- Prove that our matrix A has high dim>>

- Prove that small circuits compute x — Bx only
for B with low dim>>

- Conclude that A requires large circuits



PROOF
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- Prove that dim>3(A) > 2"
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PROOF

/

+ Prove that dim>3(A) > 2"

- Prove that circuits of size s compute x — Bx
only for B with dim>3(A) < (n? + s)°

- Conclude that s > Q(n*/logn) \/
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PROOF

+ Prove that dim>3(A) > 2"

- Prove that circuits of size s compute x — BXx
only for B with dim>3(A) < (n? + s)°

- Conclude that s > Q(n?/logn)



TECHNICAL LEMMA

Lemma

Let C be a linear circuit of size s computing
X — Bx for B e C"™". Then

dim>(A) < (n* +5)°.

N2



Lemma

Let C be a linear circuit of size s computing
X — Bx for B € C"™". Then

dimS3(A) < (n% +5)° .
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