MATRIX RIGIDITY

RECTANGULAR PCPS

Sasha Golovnev October 21, 2020

VERVIEW

• Recall that we want $M \in \mathbb{F}_2^{n \times n}$, $M \in \mathbf{E}^{NP}$

$$\mathcal{R}_{M}^{\mathbb{F}_{2}}(\varepsilon n) \geq \Omega(n^{1+\delta})$$
.

• We'll prove that there is $M \in \mathbb{F}_2^{n \times n}$, $M \in \mathbb{F}_2^{NP}$

$$\mathcal{R}_{M}^{\mathbb{F}_{2}}(2^{\log n/\log\log n}) \geq \Omega(n^{2}).$$

Orthogonal Vectors
Non-deterministic Hierarchy Theorem

Rectangular PCPs

CONSTRAINT SATISFACTION PROBLEMS (SP)

Definition

A k-CSP is specified by a Boolean function $f: \{0,1\}^k \to \{0,1\}$. An instance of k-CSP is a formula with n Boolean variables and m = poly(n) constraints, where each constraint is f applied to a k-tuple of variables or their negations.

3-CSP 2-CSP
Ev.
$$k=3$$
 $\mathcal{J}=OR$
 $(x, \sqrt{x_2} \sqrt{x_n})$ $(x_3 \sqrt{x_1})$
 $(x, \sqrt{x_2} \sqrt{x_n})$ $(x_4 \sqrt{x_1})$
 $(x_4 \sqrt{x_2} \sqrt{x_n})$ $(x_5 \sqrt{x_1})$
 $(x_4 \sqrt{x_2})$ $(x_4 \sqrt{x_1})$ $(x_5 \sqrt{x_1})$

CONSTRAINT SATISFACTION PROBLEMS

Definition

A k-CSP is specified by a Boolean function $f: \{0,1\}^k \to \{0,1\}$. An instance of k-CSP is a formula with n Boolean variables and m constraints, where each constraint is f applied to a k-tuple of variables or their negations.

Definition

In Max-kCSP, the goal is to find the maximum number of simultaneously satisfiable clauses.

SAT = can we satisfy all clauses of P? MAY-SAT - opt. vension of SAT Given P, K, conve satisfy 3 k clounces? (X, VX2) 1 (X, VX2) 1 (X, VX2) 1 (X, VX2) is not Satistiahly, SAT > no MAY-SAT > 3

MAX-CSP Ex. K=2 F= XOR (x. ® X7) (xn ® X3)... MAX-ZCIN / MAX-ZXOR/ MAX-CUT MAY-CMT puoblem. Cut=# of red-blue edges MA+-Cur - Sond a cut (red-hlue coloning of ventices) that max Hof cut edge, (ned-blue edges) Pheriosly; we showed very simple to - apx for MAY-Cus asing wondowns Then we said, painwise and. (Toeplitz) denandomizes alg. eveny venter - x; E E 0,13 ering edge (x1, x2) (x, () ×2)

eveny ealge (x, xz) >> (x, xz) x:=0 if x: ighed sat iff x:=1 if x: ighlue edge ighed-blue Grinstance of MAX-CUS

white equivalent

MAX-2XOR Fla. P

Max It of sat clauses in P

II

Mox-CUS in G

Motivation: Hardness of Approximation

Motivation: Hardness of Approximation

· Two views of PCPs:

Motivation: Hardness of Approximation

- · Two views of PCPs:
 - Probabilistically Checkable Proofs

Motivation: Hardness of Approximation

- · Two views of PCPs:
 - Probabilistically Checkable Proofs
 - Hardness of Approximation

PROBABILISTICALLY CHECKABLE PROOFS

Recall: $L \in \mathbf{NP}$ if there exists deterministic poly-time V:

$$\frac{X \in L}{X \notin L} \Rightarrow \frac{\exists \pi}{\forall \pi} S.t. V^{\oplus}(X) = 1$$

$$\frac{X \notin L}{X \notin L} \Rightarrow \frac{\forall \pi}{\forall \pi} V^{\pi}(X) = 0$$

$$L = SAT \in NP$$

$$P \in SAT \Rightarrow \frac{\exists x \in So, 15}{\forall x \in So, 15} V^{\times}(P) = 1$$

$$P \& SAT \Rightarrow \frac{\exists x \in So, 15}{\forall x \in So, 15} V^{\times}(P) = 0$$

PROBABILISTICALLY CHECKABLE PROOFS

Recall: $L \in \mathbf{NP}$ if there exists deterministic poly-time V:

$$x \in L \implies \exists \pi \quad \text{s.t.} V^{\underline{\pi}}(x) = 1$$

 $x \notin L \implies \forall \pi \quad V^{\pi}(x) = 0$

In the class PCP, \underline{V} is randomized and has random access to π

pandomness 1 quentes PCP

Let $r, g: \mathbb{N} \to \mathbb{N}$, then PCP(r, q) is the class of languages L s.t. there exists a poly-time probabilistic V:

- Efficient: For $\underline{x} \in \{0,1\}^n$ and a proof $\underline{\pi}$, V has $O(\underline{r}(n))$ random bits, makes $O(\underline{q}(n))$ queries to π
- Completeness: If $x \in L$, then V accepts with probability $>_C = 1$.—respect completeness
- Soundness: if $x \notin L$, then V accepts with probability $< \underbrace{s}_{\bullet} \subset .$

PCP for 3-SAT + with n voins m clourses. PESAT =>Pis satisfiable. Proof(17) to be XEEQ13h PESAT =>]xesa13" s-t- efficient V looks ort 1 random clause off. =) accept P. PESAT => HXEEO,13 my V will detect ungatisfied clourse w.p. 7 m. logm houndom kits, 3 quennes

This was example of PCP (logm, 3)
$$C=1$$
 $S=1-tm$ for 3-SAT

$$GNI(G_1, G_2)$$

$$G_1 \neq G_2$$

$$= \times$$

$$1 \neq 1$$

GNIEPCP(poly(n), 1) Gi, 62 with n Proof 17: Hereny graph n ventices 6. if 6 = 61if 6 = 62 is 6\$61,6\$62 V has snaphs 6,,62 piche nandom ht {1,2}:66 Takes pandon perm 65>H

IF 6, \$62.

Sony, b=1. $H=G_1$ $\Pi(H)=1$. V accepts $G_1 \neq G_2$ Sony, b=1, $H=G_1=G_2$ $\Pi(H)=0$ on $\Pi(H)=1$ V accepts $w p \neq z$.

PCP THEOREM

Theorem (PCP Theorem [AS92, ALMSS92])

NP = PCP(log n, 1).

O(logn)

handoning,

yuenies

$$x \in L = 7$$
 accept $c = 1$.

always

 $S = \text{any constant}$
 $S = 0.9 \implies S = 0.01$

amplify

L= { math statements of length n that have proofs of (ength poly(h))}

LENP, Son every statement
there is a proof of length
polylar, Venifier can
always check math proofs.

LEPCP(Lopn, 1)

Eveny math proof (of roly-both)
can new nitten in some PCP form
s.t. one can check connectness
of the proof by leohong at any
3 bits of the proof.

PCP THEOREM

Theorem (PCP Theorem [AS92, ALMSS92])

$$NP = PCP(log n, 1)$$
.

Theorem (Scaled-up PCP [BFLS91, AS92, ALMSS92])

$$NEXP = PCP(poly(n), 1).$$

Ex. GNIGPCP(poly(n), 1)

PCP: HARDNESS OF APPROXIMATION

PCPT: NP= PCP(Logn, 1)

Theorem (PCP Theorem)

There exists a constant p < 1 s.t. it's **NP**-hard to p-approximate Max-3SAT.

cannot distinguish between 3-SAT easien than 3-GAT

Example: NP = PCP(log n, 1) implies that k-CSP is NP-hard to p-approximate for some constant p and k.

3-SAT & NPEPCP(Logn,1) Pisa 3- (NF Fla. 3 MESO, 13h ₩RE{0,13^{10logn} assigntment V looks at 3 positions of 17 V décides whether accept/héject Y nandomness RESO, 15 V looks at 3 positions (x, 177 vxii) 3-CSP -use (x, 177 vxii) whateven fla 0F3 x5 2 lologn différent strings R. (x 147 U411) (Xn 1 44, V x2)

nº clourses, 3-CSP Venisier somples a nondom cloude, and venifies whether it's satisfied by Proof XC50,13" PCP C=1 55 Pis SAT => Vaccepts

I is not SAT >> w.p. 6/2 Pis SAT => Vaccepts
w.p.1

=> eveny clourse
of 3-CSP can be sort

Pis not SAT=> Vaccept

=> == 2 clourses can
be sortispied.

frandress of apx view of PCP

frandress of apx view of PCP

pcp stants with like 3SAT

hand (m clouses) (m clouses

Landress (20.9m clouses

Proof View

Approximation View

Proof View	Approximation View
PCP Verifier	CSP formula

Proof View	Approximation View	
PCP Verifier	CSP formula	
PCP proof	Assignment to Boolean vars	

Proof View	Approximation View		
PCP Verifier	CSP formula		
PCP proof	Assignment to Boolean vars		
Length of proof	# of vars		

Proof View	Approximation View		
PCP Verifier	CSP formula		
PCP proof	Assignment to Boolean vars		
ength of proof	# of vars		
# of queries	width of constraints		

Proof	Vi	ew

Approximation View

PCP Verifier
PCP proof
Length of proof
of queries
of random bits

CSP formula
Assignment to Boolean vars
of vars
width of constraints
log of # of constraints

SMOOTH PCPS

No favorite vanishle

Definition

A PCP is smooth if V queries every variable with equal probability (queries every bit of the proof with equal probability).

SMOOTH PCPS

Definition

A PCP is smooth if V queries every variable with equal probability (queries every bit of the proof with equal probability).

If your proof is not correct, but differs from it in a few positions, chances are your proof will be accepted by a smooth verifier!

cornect x1 -- Xn

you you which differ than xi - xi in 140 of positions

RECTANGULAR PCPS

Example: Max-2LIN.

Theorem (BHPT20)

Theorem (BHPT20)

For any $L \in NTIME[2^n]$, there exists a PCP verifier V that

• # of random bits is n + o(n)

Theorem (BHPT20)

- # of random bits is n + o(n)
- query complexity is O(1)

Theorem (BHPT20)

- # of random bits is n + o(n)
- query complexity is O(1)
- proof of length 2ⁿ poly(n)

Theorem (BHPT20)

- # of random bits is n + o(n)
- query complexity is O(1)
- proof of length 2^n poly(n)
- V runs in time $2^{(1-\varepsilon)n}$

Theorem (BHPT20)

- # of random bits is n + o(n)
- query complexity is O(1)
- proof of length 2^n poly(n)
- V runs in time $2^{(1-\varepsilon)n}$
- V is smooth

Theorem (BHPT20)

- # of random bits is n + o(n)
- query complexity is O(1)
- proof of length 2^n poly(n)
- V runs in time $2^{(1-\varepsilon)n}$
- · V is smooth
- · V is almost rectangular

Theorem (BHPT20)

- # of random bits is n + o(n) —
- query complexity is O(1)
- proof of length 2ⁿ poly(n)
- · V runs in time $2^{(1-\varepsilon)n}$
- · V is smooth
- west time · V is almost rectangular
- · the CSP problem is almost MAX-2LIN = MAX-CUS