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OVERVIEW

- Recall that we want M € F*", M € EN°

Ry (en) > Q(n'?).

- We'll prove that there isM € FJ*", M ¢
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Rﬁz(zlogn/loglogn) > Q(I’)z) .

- We'll use

(\/- Orthogonal Vectors
- Non-deterministic Hierarchy Theorem

—=— Rectangular PCPs
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CONSTRAINT SATISFACTION PROBLEMS (<SP)

Definition

A R-CSP Is specified by a Boolean function
f: {0,138 {0,1}. An instance of k-CSP is a
formula with n,Boolean variables and m = pdy(»)
constraints, where each constraint is f applied
to a R-tuple of variables or their negations.
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CONSTRAINT SATISFACTION PROBLEMS

Definition

A R-CSP Is specified by a Boolean function

f: {0,1}% — {0,1}. An instance of R-CSP is a
formula with n Boolean variables and m
constraints, where each constraint is f applied
to a R-tuple of variables or their negations.

Definition

In Max-RCSP, the goal Is to find the maximum
number of simultaneously satisfiable clauses.
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- Motivation: Hardness of Approximation
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PCP

- Motivation: Hardness of Approximation

. Two views of PCPs:

- Probabilistically Checkable Proofs 2
- Hardness of Approximation



PROBABILISTICALLY CHECKABLE PROOFS

Recall: L € NP If there exists deterministic
poly-time V:
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PROBABILISTICALLY CHECKABLE PROOFS

Recall: L € NP If there exists deterministic
poly-time V:

xelL = dr s.t.VE(x) =1
XL = vr Vi(x)=0

In the class PCP, V is[rgndomized b nd has

random access to 7




p,anW' neLhf PCP
[ - quet

Letr,g: N — N, then PCP(r,g) is the class of
languages L s.t. there exists a poly-time
probabilistic V:

e

- Efficient: For x € {0,1}" and a proof z, V
has O(r(n)) randmts, makes O(q(n))
queries to T

- Completeness: If x € L, then V accepts with
probability >,C = 4 - peFeet compleberags

- Soundness: If x € L, then V accepts with
probability < §=§l C.



rL3-SA“T
PCP 5

n vams
U
P

C[awwts
wn

‘QL'(-
Befs %Ls}w

=

T

P esk

Zb\
do he X&{ﬂi
Proos " -
pe QA x &g}

twb\J
g‘,

=) acept 9.

Mee o3
=D
PaSAT

c‘
Al ofe +z |
/L \/ QwP

A lﬁ. 3“""’"‘5
m::?(l@am q
4‘5 4
qua S)
[3



Tl
S  was 0)4%.7)11 xo):

PCP(legm,3) <=1,

S :’\"i }OK g‘QAT

GNT (6, 62)
G, >

J=X
L1207




A 1)
PCPC{»M ),

T €

G NI

Hdhon
6.
C.

0 j’n 24 ohn
t) V Zv% gw |
p \La‘.ug G.
vin (¢
n

. Gy
. @J;,e§1,zj
has 9”“1",%
Y,

¢ Chg

Gy
v,

Owm ’ﬂ

tod

Tales Pra

.i@/,.
TR 6



Sow, b=1. HZ=6,
n(Hy=21.
V acepls G, %6
TIF .26
Qm,,,f;l, H=C, =6,

M (H) =0 o NH=1

\/QCCB/W@s N JZ'.,»




PCP THEOREM

Theorem (PCP Theorem [AS92, ALMSS92])

NP = PCP(logn, 1).
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PCP THEOREM

Theorem (PCP Theorem [AS92, ALMSS92])

NP = PCP(logn, 1).
Theorem (Scaled-up PCP [BFLS91, AS92,
ALMSS92])

NEXP = PCP(poly(n),1).
Er. GNIe PCP(polsls, 1)
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PCP: HARDNESS OF APPROXIMATION
PCPT: NPz PCRllogn))
7N

V

Theorem (PCP Theorem)

There exists a constant p < 1s.t. it's NP-hard
0 p-approximate Max-3SAT.
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EQUIVALENCE OF TWO VIEWS

Example: NP = PCP(logn, 1) implies that R-CSP
IS NP-hard to [_)—approximate for some constant
p and k. o
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EQUIVALENCE OF TWO VIEWS

Proof View Approximation View
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EQUIVALENCE OF TWO VIEWS

Proof View Approximation View
PCP Verifier CSP formula
PCP proof Assignment to Boolean vars
Length of proof # of vars
# of queries width of constraints
# of random bits log of # of constraints




SMOOTH PCPs

yn--,xv\éfa.l'f“
Definition e Jovervic vansahle

A PCP Is smooth If V queries every variable
with equal probability (queries every bit of the
proof with equal probability).



SMOOTH PCPs

Definition

A PCP Is If V queries every variable
with equal probability (queries every bit of the
proof with equal probability).

n
If your proof is not correct, but differs from it in

a few positions, chances are your proof will be

accepted by a smooth verifier!
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RECTANGULAR PCPs

Example: Max-2LIN.
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EXISTENCE OF RECTANGULAR PCPs

Theorem (BHPT20)
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EXISTENCE OF RECTANGULAR PCPs
Theorem (BHPT20)

For any L € NTIME[2"], there exists a PCP
verifier V that
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Theorem (BHPT20)

For any L € NTIME[2"], there exists a PCP
verifier V that
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EXISTENCE OF RECTANGULAR PCPs
Theorem (BHPT20)

For any L € NTIME[2"], there exists a PCP
verifier V that

- # of random bits is n 4+ o(n) —

- query complexity i1s O(1) // opn

- proof of length 2" poly(n) y

.V runs in time 201=en

-V Is smooth b b

- Vis almost rectangular, d

- the CSP problem is almost MAX-2LIN = MAx-Cus5




