MATRIX RIGIDITY

RIGIDITY OF HADAMARD, FOURIER, AND HANKEL MATRICES

Sasha Golovnev November 11, 2020

We proved (moderate) lower bounds for:

· Linear codes

We proved (moderate) lower bounds for:

· Linear codes

Untouched minor

· All r-minors are full-rank.

- · Linear codes

- · Linear codes
- · All *r*-minors are full-rank. Includes Vandermonde, Fourier, Cauchy
- Generalized Hadamard

- · Linear codes
- · All *r*-minors are full-rank. Includes Vandermonde, Fourier, Cauchy
- Generalized Hadamard
- · Hankel matrices

(PREVIOUS) CONJECTURE

The following matrices were conjectured to be rigid [Lok09]:

- · Hadamard + Gen Had mak
- · Fourier + Gen F. mat
- · Vandermonde
- Cauchy
- Hankel
- Error-correcting codes
- Projective planes

· Limits of Untouched Minor method

· Limits of Untouched Minor method

· Upper bound on rigidity of super regular Full-round matrices

- · Limits of Untouched Minor method
- Upper bound on rigidity of super regular matrices
- Upper bound on rigidity of good codes

- · Limits of Untouched Minor method
- Upper bound on rigidity of super regular matrices
- Upper bound on rigidity of good codes
- Upper bound for Hadamard

- · Limits of Untouched Minor method
- Upper bound on rigidity of super regular matrices
- Upper bound on rigidity of good codes
- Upper bound for Hadamard
- Upper bound for M(x, y) = f(x + y)

[DL19]: The following matrices are not rigid enough for circuit lower bounds

· A generalization of the Hadamard matrix

- · A generalization of the Hadamard matrix
- Fourier

- · A generalization of the Hadamard matrix
- Fourier
- · Hankel / Toepl: {2

- · A generalization of the Hadamard matrix
- Fourier
- Hankel
- · Circulant

- · A generalization of the Hadamard matrix
- Fourier
- Hankel
- · Circulant
- Group matrices

DE17 LIMITATION

Theorem (DE17)

Let \mathbb{F}_q be a fixed finite field, and let $f: \underline{\mathbb{F}_q^n} \to \underline{\mathbb{F}_q}$ be an arbitrary function. Let $M \in \mathbb{F}_q^{N \times N}$ for $N = q^n$ be the matrix where the (x, y) entry of M equals f(x + y) for every $x, y \in \mathbb{F}_q^n$.

For any $\varepsilon > 0$, there exists $\varepsilon' > 0$ such that $\mathcal{R}_{M}^{\mathbb{F}_{q}}(N^{1-\varepsilon'}) \leq N^{1+\varepsilon}$ for every large enough n.

Theorem (DL19) => non-nigility of Hadamand

Let $f: \mathbb{Z}_d^n \to \mathbb{C}$ be a symmetric function. Let $M \in \dot{\mathbb{C}}^{N \times N}$ for $N = d^n$ be the matrix where the (x,y) entry of M equals f(x+y) for every $x,y \in \mathbb{Z}_d^n$.

For any $\varepsilon > 0$, there exists $\varepsilon' > 0$ such that $\mathcal{R}_{M}^{\mathbb{F}_{q}}(N^{1-\varepsilon'}) \leq N^{1+\varepsilon}$ for every large enough n.

$$H_{X,Y} \approx (-1)^{\|X \otimes Y\|_0/2} \int_{\mathbb{R}^2} (-1)^{\frac{\|2||_0/2}{\|2\|_0/2}}$$

GENERALIZED HADAMARD

Definition

For every d, n, let $N = d^n$, and the generalized Hadamard matrix $H_{d,n} \in \mathbb{C}^{N \times N}$ is defined as

$$(H_{d,n})_{x,y} = \omega^{\langle x,y \rangle},$$

where
$$\omega = 2^{\frac{2\pi i}{d}}$$
 and $x, y \in \mathbb{Z}_d^n$.
If $d=2 \implies \text{Weigh-Had}$.
If $n=1 \implies \text{Fourier Matrix}$

the dez => Walsh-Had. If n=1=> Founser w - primitive dth noot of 1.

RIGIDITY OF GENERALIZED HADAMARD

Corollary

For every large enough $n, d \in \mathbb{N}$, $\varepsilon \in (0, 0.1)$, $n \geq \frac{d^2 \log^2 d}{\varepsilon^4}$, and $\varepsilon' \geq \frac{\varepsilon^4}{d^2 \log^2 d}$. The generalized Hadamard matrix $d, n \in \mathbb{C}^{N \times N}$ for $N = d^n$ has rigidity

$$\mathcal{R}_{H_{d,n}}^{\mathbb{C}}(N^{1-\varepsilon'}) \leq N^{1+\varepsilon}$$
.

Corollary

For every large enough $n, d \in \mathbb{N}$, $\varepsilon \in (0, 0.1)$, $n \geq \frac{d^2 \log^2 d}{\varepsilon^4}$, and $\varepsilon' \geq \frac{\varepsilon^4}{d^2 \log^2 d}$. The generalized Hadamard matrix $d, n \in \mathbb{C}^{N \times N}$ for $N = d^n$ has rigidity

$$\mathcal{R}_{H_{d,n}}^{\mathbb{C}}(N^{1-\varepsilon'}) \leq N^{1+\varepsilon}$$
.

Pusof:

 $H_{x,y} = \omega^{2x,y}$

x, y & & 1 21

 $W = \frac{-2\pi i}{2d}$

d=+e

Multiply the xth row of 24,47

Hx, y = Hx, y . of ex, x > Lx, y >

2 Cx, 47 + Cx, xx + CY, 47 = (xx4, xx4) = (xx4, xx4)

= 1/2-4/2

IF J: Zd >C and symmetric

then

Mxxy = F(xxy) is non-vigiol x, y & P) Symmetric In S: 20 H'xx = F(x-y), $f(2) = \sqrt{2^2} = \sqrt{2_1^2 + 2_2^2 + ... + 2_n^2}$ 1. If dis even, then d=+ ed

Ld=1. 2. If d is odd, then d==e^{2/i} | d²/=1

FOURIER MATRIX

$$F_{N} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \cdots & \omega^{N-1} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \cdots & \omega^{2(N-1)} \\ 1 & \omega^{3} & \omega^{6} & \omega^{9} & \cdots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{pmatrix}$$

where $\omega = e^{2\pi i/N}$

RIGIDITY OF FOURIER

Theorem

For every $\varepsilon \in (0, 0.1)$, the Fourier matrix $F \in \mathbb{C}^{N \times N}$ has rigidity

$$\mathcal{R}_F^{\mathbb{C}}\left(\frac{N}{2^{\mathsf{poly}(\varepsilon)(\log N)^{0.35}}}\right) \leq N^{1+\varepsilon}$$

for every large enough N.

CIRCULANT MATRICES

$$\begin{pmatrix} a_1 & a_2 & a_3 & a_4 & \dots & a_n \\ a_2 & a_3 & a_4 & a_5 & \dots & a_1 \\ a_3 & a_4 & a_5 & a_6 & \dots & a_2 \\ a_4 & a_5 & a_6 & a_7 & \dots & a_3 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_1 & a_2 & a_3 & \dots & a_{n-1} \end{pmatrix}$$

RIGIDITY OF CIRCULANT MATRICES

Theorem

For every $\varepsilon \in (0, 0.1)$, every circulant matrix $M \in \mathbb{C}^{N \times N}$ has rigidity

$$\mathcal{R}_F^{\mathbb{C}}\left(\frac{N}{2^{\mathsf{poly}(\varepsilon)(\log N)^{0.35}}}\right) \leq N^{1+\varepsilon}$$

for every large enough N.

F diagonalizes every cinculant matrix MEC NXN circulant matrix FECNEN - Foursier natnix. Then: diagonal M = F* - D - F We know F is not nigid => F=/L+S M + F*. D. F = (F-S)*·D.F +

$$+ S^* \cdot D \cdot F$$
= $(F-S)^* \cdot D \cdot F +$
 $+ S^* \cdot D \cdot (F-S) +$
 $+ S^* \cdot D \cdot F +$
 $+ S^$

HANKEL MATRICES

If Hankel was nigrial => all circulant matrices containing this Hankel in the connon would be nigrid => continued control continued in the connon would be nigrid => contradiction

(PREVIOUS) CONJECTURE

The following matrices were conjectured to be rigid [Lok09]:

- Hadamard
- Fourier
- · Vandermonde
- Cauchy
- · Hankel. more of them
- · Error-correcting codes some of them
- Projective planes