MATRIX RIGIDITY

RIGIDITY OF HADAMARD, FOURIER, AND
HANKEL MATRICES

Sasha Golovnev
November 11, 2020



RIGIDITY LOWER BOUNDS

We proved (moderate) lower bounds for:



RIGIDITY LOWER BOUNDS

We proved (moderate) lower bounds for:

n? n
. Linear codes 53 [°3L"'>



RIGIDITY LOWER BOUNDS

We proved (moderate) lower bounds for:

- Linear codes U o clhed wminalZ
- All r-minors are full-rank.



RIGIDITY LOWER BOUNDS

We proved (moderate) lower bounds for:

.- Linear codes

- All -minors are full-rank. Includes \

Vandermonde, Fourier, Cauchy (C= 275
—_— -_— Y .

~NS—



RIGIDITY LOWER BOUNDS

We proved (moderate) lower bounds for:

.- Linear codes

- All -minors are full-rank. Includes
Vandermonde, Fourier, Cauchy

. Generalized Hadamard



RIGIDITY LOWER BOUNDS

We proved (moderate) lower bounds for:

.- Linear codes

- All r-minors are full-rank. Includes
Vandermonde, Fourier, Cauchy

- Generalized Hadamard

: Hanvk"e“llmatrices



(PREVIOUS) CONJECTURE

The following matrices were conjectured to be
rigid [Lok09]:

. Hadamard « Gew Hod wot

. Fourier « Gea F.wat

- Vandermonde

- Cauchy

- Hankel

- Error-correcting codes

- Projective planes
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- Limits of Untouched Minor method

- Upper bound on rigidity of super regular
matrices

- Upper bound on rigidity of good codes
- Upper bound for Hadamard

- Upper bound for M(x,y) = f(x + V)
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THE QUEEN OF LIMITATIONS

[DL19]: The following matrices are not rigid
enough for circuit lower bounds

- A generalization of the Hadamard matrix
- Fourier

- Hankel

- Circulant

- Group matrices



DE17 LIMITATION

%
Theorem (DE17

Let Fq be a fixed finite field, and let f: Fy — IFC,
be an arbitrary function. Let M &€ IF’\’XN for =

= q" be the matrix where the (x, y) entry of
/\/l equals f(x + y) for every x,y € IFg.

For any e > 0, there exists ¢ > 0 such that
R%ﬁ(N“‘g’) < N'™¢ for every large enough n.

_r/"’x,v = [§ Craey) !3 “D
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DL19 LIMITATION
F(v., re, x;)c ):[V,, Xa, % ) ’—'):(x?,;(;,,,‘)..
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Theorem (DL19) =7 hea- ug:J:lg o): Hadouew.]

Letf: Zy — C be a function. Let
M e CN*N for N = d" be the matrix where the

(x,y) entry of M equals f(x + y) for every
X,y € 7,

For any e > 0, there exists ¢ > 0 such that
R%ﬁ(N“‘g') < N'*¢ for every large enough n.

e, = (v')ux@vll,/z ﬁ&ifpl)uau,/z:(
N




GENERALIZED HADAMARD

Definition

For every d,n, let N = d", and the generalized
Hadamard matrix Hg, € C"*" is defined as

(Hd.n)xy = 5<X’y> :

where w :rﬁ“) and x,y € Zg.
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RIGIDITY OF GENERALIZED HADAMARD

Corollary

For every large enough n, deN, ee€(0,0.1),
n > dled gng o > - 2d The generalized

Hadamard matrix d,n € C"*" for N = d" has

rigidity

RS, (N) < N



Corollary
For every large enough n deN ee€(0,0.1),
n> le'd gpg gl > = The generalized

Hadamard matrix d, n e C’V N'for N = d" has
rigidity

RSM(I\N—E ) < N1+E.
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FOURIER MATRIX .
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where w = e?™/N



RIGIDITY OF FOURIER

Theorem

For every € € (0,0.1), the Fourier matrix
F e CN*N has rigidity

N
C 14e
Re (2poly(e)(log/\/)o.35> < lN l

~

for every large enough N.




CIRCULANT MATRICES
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RIGIDITY OF CIRCULANT MATRICES

Theorem

For every e € (0,0.1), every circulant matrix
M e C"*N has rigidity

N
C T4-e
R (2poly(e>(logw)0-35) =

for every large enough N.
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HANKEL MATRICES
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(PREVIOUS) CONJECTURE

The following matrices were conjectured to be
rigid [Lok09]:

. Hadamard
- Fourier
- Vandermonde

- Cauchy
. Hankel.  wewe of toe
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- Error-correcting codes s*¢ o

- Projective planes



