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EXPONENTIAL BOUNDS

Lower Bound [Sha1949]

Counting shows that almost all functions of n
variables have circuit size at least

2"

Upper Bound [Lup1958]
Every function can be computed by a circulit of
size

2"
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EXPLICIT BOUNDS

Most functions have exponen-
tlal circuit complexity

We want to prove super-
polynomial lower bounds
(for a function from NP)

We can prove only ~3n lower

bounds
(even for a function from ENP)
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WHAT WE CAN PROVE

- Depth 2: CNF/DNF. Even @, requires circuits of

size Q(21). >=~ﬁf{3-u

. Constant depth d. Lower bounds 27",

- Depth 1.9 log n. Know functions that cannot be
computed. fan-in—n,

- Depth 2 log n. Nothing better than ~3n.
—_—
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Problem
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depth 10 log n.

More generally, a lower bound of w(n) against
circuits of depth O(log n).
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Valiant [Val77] gives us an amazing tool to study
such circuits.
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ANOTHER PROBLEM ON THE FRONTIER

Problem

Prove a lower bound of w(n) against linear
circuits of depth O(log n).

Valiant's [Val77] tool for these circuits is even
nicer!
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LINEAR CIRCUITS

- A linear map computes Mx for input x € F”
where M € FM*"

- A linear circuit only contains gates that, for
Inputs x and y, compute ax + By for some
a,BeF
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COMPLEXITY OF LINEAR OPERATORS

- Linear circuits compute only linear functions

- We don't study linear functions with 1 output
as they have circuit complexity < n even in
depth logn

- Arandom linear map with n outputs has
complexity n?/logn

- The best lower bound we can prove against
linear circuits with n outputs is 3n — o(n)

03" = fai3"
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ANOTHER PROBLEM ON THE FRONTIER

Problem

Prove a lower bound of w(n) against linear
circuits of depth O(log n).

- Incomparable to the previous problem
(bounds against non-linear circuits):

- Weaker computational model

- But fewer problems to prove lower
bounds for.
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RIGIDITY IMPLIES CIRCUIT LOWER BOUNDS

Theorem (Val77)

Let IF be a field, and A € F"*" be a family of
matrices for n € N.

If RE(en) > n' for constant ¢, > 0, then any
O(log n)-depth linear circuit computing x — Ax
must be of size w(n).



Rigidity for rank n/100 and
sparsity n'" implies
super-linear log-depth circuit
lower bounds



DEPTH REDUCTIONS

. The proof (see Lecture 1) reduces the depth of
a circuit from O(logn) to 2 (and the latter is
equivalent to rigidity)
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. The proof (see Lecture 1) reduces the depth of
a circuit from O(logn) to 2 (and the latter is
equivalent to rigidity)
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DEPTH REDUCTIONS

. The proof (see Lecture 1) reduces the depth of
a circuit from O(logn) to 2 (and the latter is
equivalent to rigidity)

- The proof Is graph-theoretic, and
graph-theoretic proofs cannot go beyond
O(log n) depth [Sch82, Sch83, Kla94]

- A non-graph-theoretic proof [GKW21] works for
unbounded-depth circuits, but alas only for
Size < 4n
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UNBOUNDED-DEPTH AND RIGIDITY

Theorem (GKW21)

Let IF be a field, and A € F"*" be a family of
matrices for n € N.

If Ra(en) > 16n, then any linear circuit
computing x — Ax must be of size > 4en.
1fF EE‘(OA%\) 7\[_6),
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Rigidity for rank 0.99n and
sparsity 16n implies circuit lower
bound of 3.9n
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COMPARISON

IfRﬁ(@ > pff then A requires log-depth

circuits of size w(n)

If RE(0.99n) > 16n, then A requires >
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unbounded-depth circuits of size 3.9n
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COMPARISON

If Ri(en) > n'*, then A requires log-depth
circuits of size w(n)

If R5(0.99n) > 16n, then A requires
unbounded-depth circuits of size 3.9n

& ! —
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MAIN RESULT

Theorem

For every matrix M € F*" of circuit
complexity s,

RE(|s/4]) < 16
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ONE STEP

Claim

Let C be an optimal linear circuit computing
M € {0,1}"*" such that no output gate of C
has depth smaller than 5. Then there Is a gate
G In C and a linear circuit ' computing a
matrix M" € {0,1}™" with the properties:

- 5(C") <s(C) — 4, and
- for every x € {0,1}",
If G(x) = 0 then C(x) = C'(x).




Claim

Let C be an optimal linear circuit computing
M € {0,1}™" such that no output gate of C
has depth smaller than 5. Then there is a gate
G in C and T ERTecuit ¢’ computing a
matrix M" € {0,1}™*" with the properties:

- s(C") <s(C) — 4, and

- for every x € {0,1}",
if G(x) = 0 then C(x) = C'(X).
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