MATRIX RIGIDITY

ON EXPLICITNESS

Sasha Golovnev September 2, 2020

RECAP

Rigid ≠ Sparse + Low-Rank

RECAP

Rigid ≠ Sparse + Low-Rank

 Moderately rigid matrices would imply circuit lower bounds

RECAP

Rigid ≠ Sparse + Low-Rank

 Moderately rigid matrices would imply circuit lower bounds

Extremely rigid matrices exist

CONSTRUCTING RIGID MATRICES

 We'll construct two families of very rigid matrices

CONSTRUCTING RIGID MATRICES

 We'll construct two families of very rigid matrices

The constructions will now be satisfying

CONSTRUCTING RIGID MATRICES

 We'll construct two families of very rigid matrices

The constructions will now be satisfying

Notion of Explicitness

Construction I.

Algebraically Independent

Numbers

LINEARLY INDEPENDENT NUMBERS

Definition

 $x_1, \ldots, x_n \in \mathbb{R}$ are linearly independent over \mathbb{Q} if they do not satisfy any non-trivial linear equation with coefficient in \mathbb{Q} :

$$k_1X_1+\ldots+k_nX_n\neq 0.$$

except for all
$$k_1, \ldots, k_n \in \mathbb{Q}$$
 $k_1 = \ldots = k_r = 0$.

LINEARLY INDEPENDENT NUMBERS

Definition

 $x_1, \ldots, x_n \in \mathbb{R}$ are linearly independent over \mathbb{Q} if they do not satisfy any non-trivial linear equation with coefficient in Q:

$$k_1x_1 + \ldots + k_nx_n \neq 0$$
.

for all $k_1, \ldots, k_n \in \mathbb{Q}$ $k_1 = \ldots = k_n$.

Example

 $\{1,\alpha\}$ are linearly independent over \mathbb{Q} iff α is 1.9, = d.92 <=> d=\$16B irrational.

EXAMPLES

Theorem (Besicovitch)

Let $a_1, a_2, ..., a_m$ be m distinct square roots of square-free integers, then they are all linearly independent over \mathbb{Q} .

Definition

 $x_1, \ldots, x_n \in \mathbb{R}$ are algebraically independent over \mathbb{Q} if they do not satisfy any non-trivial polynomial equation with coefficient in \mathbb{Q} .

Definition

 $x_1, \ldots, x_n \in \mathbb{R}$ are algebraically independent over \mathbb{Q} if they do not satisfy any non-trivial polynomial equation with coefficient in \mathbb{Q} .

Examples

 $\{\pi,e^{\pi}\}$ are algebraically independent over $\mathbb Q$

Definition

 $x_1, \ldots, x_n \in \mathbb{R}$ are algebraically independent over \mathbb{Q} if they do not satisfy any non-trivial polynomial equation with coefficient in \mathbb{Q} .

Examples

- $\{\pi,e^{\pi}\}$ are algebraically independent over $\mathbb Q$
- $\{\sqrt{e+7}, e^3 + 1\}$ are not algebraically independent over \mathbb{Q}

Definition

 $x_1, \ldots, x_n \in \mathbb{R}$ are algebraically independent over \mathbb{Q} if they do not satisfy any non-trivial polynomial equation with coefficient in \mathbb{Q} .

Examples

- $\{\pi,e^{\pi}\}$ are algebraically independent over $\mathbb Q$
- $\{\sqrt{e+7}, e^3 + 1\}$ are not algebraically independent over \mathbb{Q} $\{e, \pi\}$ —open question!

PERRON'S THEOREM

Theorem

Any set $p_1, \ldots, p_{n+1} \in \mathbb{F}[x_1, \ldots, x_n]$ of n+1 polynomials of n variables is algebraically dependent.

PERRON'S THEOREM

Theorem

Any set $p_1, \ldots, p_{n+1} \in \mathbb{F}[x_1, \ldots, x_n]$ of n+1 polynomials of n variables is algebraically dependent.

Example

$$p_{1} = (x + y)^{3}$$

$$p_{2} = x + y + y^{2}$$

$$p_{3} = y$$

$$A(p_{1}, p_{2}, p_{3}) = (p_{2} - p_{3}^{2})^{3} - p_{1} \equiv 0$$

LINDEMANN-WEIERSTRASS THEOREM

Theorem (Lindemann-Weierstrass)

If $\underline{x_1, \dots, x_n}$ are linearly independent over \mathbb{Q} , then e^{x_1}, \dots, e^{x_n} are algebraically independent over \mathbb{Q} .

LINDEMANN-WEIERSTRASS THEOREM

Theorem (Lindemann-Weierstrass)

If $x_1, ..., x_n$ are linearly independent over \mathbb{Q} , then $e^{x_1}, ..., e^{x_n}$ are algebraically independent over \mathbb{Q} .

Example

 $e^{\sqrt{2}}, e^{\sqrt{3}}, e^{\sqrt{5}}, e^{\sqrt{6}}$... are algebraically independent.

RIGIDITY FROM ALGEBRAIC INDEPENDENCE

Lemma

Let $M \in \mathbb{R}^{n \times n}$ be a matrix where all n^2 elements are algebraically independent over \mathbb{Q} . Then for every $0 \le r \le n$,

$$\mathcal{R}_{M}^{\mathbb{R}}(r)=(n-r)^{2}$$
.

Pf., Courtnany:
$\exists s-spanse mater S, s=(n-r)^2-s$
Rank $(M+S) \leq R$
R Mel Mez N-R Mel Mez
All entries of M22 will be podys
of M11, M12, M21, S
M polys of M11, M12, M21, S
#variables: $n^2 - (n-r)^2 + S \leq n^2 - 1$
the polys = n2
=> 3 poly P satisfied by no polys.
=> n² entries are not algind.
Short degen: e'eve evs
Cannot decimal repres.:

Construction II. Exponential Time

EXISTENCE

Theorem (Last Lecture)

Let

$$q = |\mathbb{F}| < \infty,$$

$$r = n - \Theta(\sqrt{n}),$$

$$s = \Theta((n - r)^2 / \log n).$$

There exists a matrix $M \in \mathbb{F}^{n \times n}$:

$$\mathcal{R}_{M}^{\mathbb{F}}(r) \geq s$$
.

ALGORITHM

- For every $M \in \mathbb{F}^{n \times n}$
 - If for every s-sparse $S \in \mathbb{F}^{n \times n}$
 - \cdot rank $(M + S) \ge r$
 - · Then $\mathcal{R}_{M}^{\mathbb{F}}(r) \geq s$

ALGORITHM

- For every $M \in \mathbb{F}^{n \times n}$
 - If for every s-sparse $S \in \mathbb{F}^{n \times n}$
 - \cdot rank $(M+S) \ge r$
 - · Then $\mathcal{R}_{M}^{\mathbb{F}}(r) \geq s$

Correctness

Follows from existence.

ALGORITHM

- For every $M \in \mathbb{F}^{n \times n}$
 - If for every s-sparse $S \in \mathbb{F}^{n \times n}$
 - \cdot rank $(M+S) \ge r$
 - Then $\mathcal{R}_{M}^{\mathbb{F}}(r) \geq s$

Correctness

Follows from existence.

Running time

$$q^{n^2} \cdot q^{n^2} \cdot n^{O(1)} = q^{O(n^2)}$$

Brute force doesn't work

Brute force doesn't work

• We'll prove that there exists a rigid (over \mathbb{R}) matrix $M \in \{0,1\}^{n \times n}$

Brute force doesn't work

• We'll prove that there exists a rigid (over \mathbb{R}) matrix $M \in \{0,1\}^{n \times n}$

• We'll show that one can check rigidity of a matrix $M \in \mathbb{R}^{n \times n}$ in time $2^{O(n^2)}$

Brute force doesn't work

• We'll prove that there exists a rigid (over \mathbb{R}) matrix $M \in \{0,1\}^{n \times n}$

• We'll show that one can check rigidity of a matrix $M \in \mathbb{R}^{n \times n}$ in time $2^{O(n^2)}$

ZERO-PATTERNS

Definition

For a set of *t*-variate polynomials $F = \{f_i\}_{i \in [m]}$, its set of *zero-patterns* is the of all sequences of zero-non-zero outputs of functions from F:

$$Z(F) = \begin{cases} M = 01010 & \text{iff } \exists x : \\ S_{i}(x) = 0; & \text{follows } f_{i}(x) \neq 0 \end{cases} \\ \{M \in \{0,1\}^{m} : \exists x \in \mathbb{F}^{t} \ \forall i \in [m], \ M_{i} = \mathbf{1}_{f_{i}(x) \neq 0} \}. \end{cases}$$

ZERO-PATTERNS

Definition

For a set of *t*-variate polynomials $F = \{f_i\}_{i \in [m]}$, its set of *zero-patterns* is the of all sequences of zero-non-zero outputs of functions from F:

$$Z(F) = \{M \in \{0,1\}^m : \exists x \in \mathbb{F}^t \ \forall i \in [m], \ M_i = \mathbf{1}_{f_i(x) \neq 0}\}.$$

Lemma (RBG01)

$$|Z(F)| \leq {t + dm \choose t} \cdot \approx (dm)^{\frac{1}{2}} \cdot compare 2^{\frac{1}{2}}$$

$$|Z(F)| \le {t + dm \choose t}$$
.

Pf.
$$N = |Z(F)|$$
 $X_1, \dots, X_N \in \mathbb{R}^t$ "witness"

 $N \text{ distinct zeno-partenns of } F.$
 $1000 \quad \exists x_1 \in \mathbb{R}^t$
 $f_1(x_1) \neq 0 \quad f_2(x_1) = f_3(x_1) = f_m(x_1) = 0$
 $0101 \quad \times 2$

iEEN]. Sie Con] - the set of (indices of) polys From F which are not zeros at x;

 $g_i = \prod_k g_i(x_i) \neq 0$

N polys gi Later song N = $q_i(x_i) = 0$ iff $\exists f_k \in S_i \setminus S_i$

g: (x;)=0 iff 3fke S:\S;

Which polys are O at point xs

Si = polys which are not zenos

All but polys from Si = 0 at xs.

Si = [7] F

$$\int g_i(x_j) = 0 \text{ iff } S_i \neq S_j$$

All pdys g; one linearly ind. 3 a ... an CR:

i* = aremin | Sil iE[N], a; to

BINARY RIGID MATRIX

Theorem (PR94)

For all large enough n, there exists a matrix $M \in \{0,1\}^{n \times n}$ such that

$$\mathcal{R}_{M}^{\mathbb{R}}\left(\frac{n}{200}\right) \geq \frac{n^2}{100} .$$

$$|Z(F)| \le \binom{t + dm}{t}.$$

$$R = \frac{n}{200} \quad S = \frac{n^2}{100}$$

M- deg-2 in S+2Rn vars.

$$|Z(F)| \leq \left(\begin{array}{c} t + dm \\ t \end{array}\right) \approx \left(\begin{array}{c} 2n^2 + \frac{h^2}{50} \\ \frac{h^2}{50} \end{array}\right)$$

upper hound on {0,13 non-nipid matrices.

non-migid matrices & # zero-potterns

$$= \frac{n^2}{10} \cdot \frac{n^2}{100} \cdot \frac{n^2}{100} = \frac{1}{100}$$

$$= \frac{n^2}{100} \cdot \frac{n^2}{100} = \frac{1}{100}$$

INFINITE FIELDS

Brute force doesn't work

• We'll prove that there exists a rigid (over \mathbb{R}) matrix $M \in \{0,1\}^{n \times n}$

• We'll show that one can check rigidity of a matrix $M \in \mathbb{R}^{n \times n}$ in time $2^{O(n^2)}$

CHECKING RIGIDITY

Theorem

One can decide whether a system of m degree-2 polynomials of n variables with $\{0,1\}$ -coefficients has a solution in time $O(m^{O(1)}2^{O(n)})$. degree -d pdys

CHECKING RIGIDITY

Theorem

One can decide whether a system of m degree-2 polynomials of n variables with $\{0,1\}$ -coefficients has a solution in time $O(m^{O(1)}2^{O(n)})$.

Theorem

Let $M \in \{0,1\}^{n \times n}$, and r and s be non-negative integers. Then one can decide whether $\mathcal{R}_M^{\mathbb{R}}(r) > s$ in time $2^{O(n^2)}$.

Theorem 1

One can decide whether a system of m degree-2 polynomials of n variables with $\{0,1\}$ -coefficients has a solution in time $O(m^{O(1)}2^{O(n)})$.

Theorem

Let $M \in \{0,1\}^{n \times n}$, and r and s be non-negative integers. Then one can decide whether $\mathcal{R}_M^{\mathbb{R}}(r) > s$ in time $2^{O(n^2)}$.

Ph.
$$M = S + L = S + L_1 \cdot L_2$$

iff

Mis non-night

For one $\binom{N^2}{S}$ Choices of non-zens in S:

 N^2 enthies of $M = \text{degnee } 2 - \text{pdy}^2$

equations.

 $Vars, S, L_{11}L_2$. Check $\exists sol That 1$

fivans $9 + n \cdot R + n \cdot 12$

Line $2 \cdot \binom{N^2}{S} = 2 \cdot \binom{N^2}{S}$

CONSTRUCTING RIGID MATRICES

 We'll construct two families of very rigid matrices

· The constructions will now be satisfying

Notion of Explicitness $2^{n^2} \in E$ CCR for E First EMP

Explicit matrices = have

algorithms outputting all their

entries in polynomial time

rigidity field running time

rigidity	field	running time
$\frac{(n-r)^2}{\log n}$	$ \mathbb{F} <\infty$	existence

rigidity	field	running time
$\frac{(n-r)^2}{\log n}$	$ \mathbb{F} <\infty$	existence
$(n-r)^2$	$ \mathbb{F} = \infty$	existence

rigidity	field	running time
$\frac{(n-r)^2}{\log n}$	$ \mathbb{F} <\infty$	existence
$(n - r)^2$	$ \mathbb{F} = \infty$	existence
$(n-r)^2$	\mathbb{R}	alg ind ent

rigidity	field	running time
$\frac{(n-r)^2}{\log n}$	$ \mathbb{F} <\infty$	existence
$(n - r)^2$	$ \mathbb{F} =\infty$	existence
$(n - r)^2$	\mathbb{R}	alg ind ent
$\frac{(n-r)^2}{\log n}$	$ \mathbb{F} <\infty$	$2^{O(n^2)}$

rigidity	field	running time
$\frac{(n-r)^2}{\log n}$	$ \mathbb{F} <\infty$	existence
$(n - r)^2$	$ \mathbb{F} = \infty$	existence
$(n - r)^2$	\mathbb{R}	alg ind ent
$\frac{(n-r)^2}{\log n}$	$ \mathbb{F} <\infty$	$2^{O(n^2)}$
$(n - r)^2$	\mathbb{R}	$2^{O(n^2)}$

OVERVIEW

Next week: Explicit constructions

OVERVIEW

Next week: Explicit constructions

 Next month: Less explicit but more rigid constructions