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- Notion of Explicitness



Construction I.
Algebraically Independent
Numbers
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LINEARLY INDEPENDENT NUMBERS
Definition

X1,...,Xn € R are linearly iIndependent over Q
If they do not satisfy any non-trivial linear
equation with coefficient in Q:

forall Ry,...,Rn € QR = ... = Rp.

Example

{1, a} are linearly independent over Q Iff a IS
irrational. 1-9, = ole@y <=>

olzLeb



EXAMPLES

Theorem (Besicovitch)

Let aq,a,,...,am be m distinct square roots of

square-free integers, then they are all linearly
Independent over Q.

N2 €@ {13
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ALGEBRAICALLY INDEPENDENT NUMBERS
Definition

X1,...,Xn € R are algebraically independent
over Q If they do not satisfy any non-trivial
polynomial equation with coefficient in Q.

Examples

- {m,e"} are algebraically independent
over Q

- {Ve+7,e%+ 1} are not algebraically in-
dependent over QQ

{e, m}—open question!
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Theorem
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polynomials of n variables is algebraically
dependent.



PERRON’'S THEOREM
Theorem
Any set pq,...,Pni1 € Flxq, ..., xp] Of N+ 1

polynomials of n variables is algebraically
dependent.

Example
pr = (X+y)
Pr=X+Yy+Y
Pz =Y

( A(p1, P2, P3)/= (P2 — P3)° —p1 =0

‘ r




LINDEMANN-WEIERSTRASS THEOREM

Theorem (Lindemann-Weierstrass)

If X1,...X, are linearly independent over Q,
then €4, ..., e* are algebraically independent
over Q.

(&) @9« @9-ley"



LINDEMANN-WEIERSTRASS THEOREM

Theorem (Lindemann-Weierstrass)

If X1,...X, are linearly independent over Q,
then e, ... e are algebraically independent
over Q.

Example

Meﬁ, evVe/ .. are algebraically

Independent.




RIGIDITY FROM ALGEBRAIC INDEPENDENCE

Lemma

Let M € R™" be a matrix where all n’
elements are algebraically independent
over Q. Then for every 0 < r <n,

Ru(r) = (n—r)*.
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Construction II.
Exponential Time



EXISTENCE

Theorem (Last Lecture)
Let

q = |F| < o0,
r=n—0(/n),
s=0((n—-r)?/logn).

There exists a matrix M € =" .

Ru(r) >s.



ALGORITHM
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ALGORITHM

- For every M € ™"

- If for every s-sparse S € F"*"
rank(M +S) > r
- Then Ry (r) >s

Correctness
Follows from existence.

Running time
q”2 : q”2 . no() — qO(n2)



INFINITE FIELDS

- Brute force doesn’t work



INFINITE FIELDS

- Brute force doesn’t work

- We'll prove that there exists a rigid (over R)
matrix M € {0,1}"*"



INFINITE FIELDS

- Brute force doesn’t work

- We'll prove that there exists a rigid (over R)
matrix M € {0,1}"*"

- We'll show that one can check rigidity of a
matrix M € R™" in time 20(")



INFINITE FIELDS

- Brute force doesn’t work

- We'll prove that there exists a rigid (over R)
matrix M € {0,1}"*"

- We'll show that one can check rigidity of a
matrix M € R™" in time 2°(")



/ERO-PATTERNS
Definition

For a set of t-variate polynomials F = {fi}iepm,
Its set of zero-patterns is the of all sequences
of zero-non-zero outputs of functions from F:
M=01010 F 3%:
Z(F) = £.6)=p ; 220 B0
{M S {O,1}m . Ix e F' Vi e [m], M; = 1]3.()()750}.



ZERO-PATTERNS

Definition

For a set of t-variate polynomials F = {fi}icpm,
Its set of zero-patterns is the of all sequences
of zero-non-zero outputs of functions from F:

Z(F) =
{M S {O,1}m . Ix e F' Vi e [m], M; = 1]3.()()750}.

Lemma (RBGO1)
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BINARY RIGID MATRIX

Theorem (PR94)

For all large enough n, there exists a matrix
M e {0,1}"*" such that

n n?
i (—) >
M\200/ = 100
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INFINITE FIELDS

- Brute force doesn’t work

- We'll prove that there exists a rigid (over R)
matrix M € {0,1}"*"

- We'll show that one can check rigidity of a
matrix M € R™" in time 2°(™)



CHECKING RIGIDITY

Theorem

One can decide whether a system of m
degree-2 polynomials of n variables with
{0,1}-coefficients has a solution in time

O O(120(1), degrer ol pdys
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CHECKING RIGIDITY

Theorem

One can decide whether a system of m
degree-2 polynomials of n variables with
{0,1}-coefficients has a solution in time
O(mPM20(n),

Theorem

Let M € {0,1}"™" and r and s be non-negative
integers. Then one can decide whether
RR(r) > s in time 20(),



Theorem 1
One can decide whether a system of m
degree-2 polynomials of n variables with

{0, 1}-coefficients has a solution in time
O(mOM20(n).

Theorem

Let M € {0,1}"™", and r and s be non-negative
integers. Then one can decide whether S‘/ﬂ
RE(r) > s in time 20(m),

el

P M=Sx/l = S’«-L LZ
7




CONSTRUCTING RIGID MATRICES

- We'll construct two families of very rigid
matrices

- The constructions will now be satisfying

- Notion of Explicitness = €
— 22 e E
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Explicit matrices = have
algorithms outputting all their
entries in polynomial time
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SUMMARY

rigidity  field running time
(I”Oggz F| < oo existence
n—-r — 00 existence

2 |F t
n—ry R alg ind ent
(n—r)
(n—r)? F| < oo 20(n?)




SUMMARY

rigidity  field running time
(I”Oggz F| < o0 existence
(n—r)* |F| =00 existence
(n—r)> R alg ind ent
ot F| < oo 20(n?)
(n—r? R 20(n%)
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OVERVIEW

- Next week: Explicit constructions

- Next month: Less explicit but more rigid
constructions



