MATRIX RIGIDITY

REVIEW OF PART I

Sasha Golovnev September 16, 2020

TOOLS USED IN PART I

LAST LECTURE

Take a randon object Prove PR[GOOD] 70 PRCBADJ<1 we proved 3 rigist

- Probabilistic Method
- · Algebraic Independence

Alg ind is often as good as eaudomness (on bettee) Matrix walg indentures is rigid.

 In order to prove an upper bound on the number N of zero-patterns, we

- In order to prove an upper bound on the number N of zero-patterns, we
 - defined a polynomial for each zero pattern

- In order to prove an upper bound on the number N of zero-patterns, we
 - defined a polynomial for each zero pattern
- Step 1. showed that all N polynomials are linearly independent subspace V generaled by N poly, dim(V)=N

- In order to prove an upper bound on the number N of zero-patterns, we
 - defined a polynomial for each zero
- Step 2. showed that all N polynomials are linearly independent.

 Step 2. but they live in a low-dimensional.
 - but they live in a low-dimensional space

 dim(V) Islow

 N=dim(V)

 is small

$$dim(V)$$
 is low $N = dim(V)$
 $ightarrow single$

- In order to prove an upper bound on the number N of zero-patterns, we
 - defined a polynomial for each zero pattern
 - showed that all N polynomials are linearly independent
 - but they live in a low-dimensional space
 - hence, an upper bound on N

Lwo distances {a,b} $n = \Omega(d^2)$ $P_1 - P_1 \in \{0,1\}^0$ 11 pill 1 = 2 - has exactly two $n=\left(\frac{d}{2}\right)$ dist=2 1/0/0/1/0 Ps 10011010100

Prove an Uppen Bound on n

$$\frac{P_{1}-P_{n} \in \mathbb{R}^{d}}{F_{1}-F_{n}-P_{n}dy} \quad F_{1}(x) \times \in \mathbb{R}^{d}$$

$$F_{1}(x) = (||x-p_{1}||_{2}^{2}-e^{2}) \cdot (||x-p_{1}||_{2}^{2}-b^{2})$$

$$F_{1}(p_{1}) = e^{2} \cdot b^{2} \neq 0$$

$$F_{2}(p_{1}) = (||p_{1}-p_{1}||_{2}^{2}-e^{2}) \cdot (||p_{2}-p_{1}||_{2}^{2}-b^{2})$$

$$= 0$$

Poly method V

Stepl: prove polys are lining Stepl: dim (span) is small

Step 1: Fi one lin Ind. ≥ f:·d:=0 => all d:=0 # \$ 5/A·d: =0 x=Pi +5 = \$1, --, n2 $\sum_{i=1}^{2} f_i(p_i) \cdot d_i = 0$ $f_i(p_j) = 0$ $f_i(p_j) = 0$ $f_i(p_j) = 0$ J; (Pi)·d; = 0 S; (P;) #0 J: =0 ≥ \J (\{ 1, --, 4}

V-subspace real funs Rd >R
spanned Fi --- fin

dim (V) = n

It remains to show dim(V) is smay

POLYNOMIAL METHOD. EXAMPLE

Theorem

Let $x_1, ..., x_n \in \mathbb{R}^d$ be points such that the pairwise distances between them take two values. Then

$$n=O(d^2).$$

 In order to bound the number of edges in a graph it often suffices to exclude some local configurations

- In order to bound the number of edges in a graph it often suffices to exclude some local configurations
- We showed that a graph without bipartite cliques is not dense

- In order to bound the number of edges in a graph it often suffices to exclude some local configurations
- We showed that a graph without bipartite cliques is not dense

Theorem [45T]

Let $s \in \mathbb{N}$ be a constant. The number of edges in a $K_{s,s}$ -free graph is $O(n^{2-1/s})$.

us $\Theta(n^2)$ in complete prey

 Concluded that a few changes in a matrix leave an untouched matrix of size s x s

• Concluded that a few changes in a matrix leave an untouched matrix of size $s \times s$

 Thus, matrices with non-zero minors are (moderately) rigid

ZARANKIEWICZ PROBLEM. EXAMPLE

Theorem (Szemerédi-Trotter theorem)

n points and n lines in the plane have $O(n^{4/3})$ point-line incidences. \frown

(point, line) s.t.

point-line incidences En2

HÖLDER'S INEQUALITY

Theorem

For any $x, y \in \mathbb{C}^n$, any $p, q \in [1, \infty]$ with 1/p + 1/q = 1:

$$\sum_{i=1}^n |x_i y_i| \leq \|x\|_p \|y\|_q.$$

HÖLDER'S INEQUALITY

Theorem

For any $x, y \in \mathbb{C}^n$, any $p, q \in [1, \infty]$ with 1/p + 1/q = 1:

$$\sum_{i=1}^{n} |x_i y_i| \leq ||x||_p ||y||_q.$$

• Connects different L_p norms

HÖLDER'S INEQUALITY

Theorem

For any $x, y \in \mathbb{C}^n$, any $p, q \in [1, \infty]$ with 1/p + 1/q = 1:

$$\sum_{i=1}^{n} |x_i y_i| \leq ||x||_p ||\mathbf{y}||_q.$$

- \mathcal{E}_{0} : \mathcal{E}
- · In Kővári-Sós-Turán Theorem, we had a bound on sth moment of vertices' degrees, needed bound on number of edges

HÖLDER'S INEQUALITY. EXAMPLE

Theorem

For $v \in \mathbb{C}^n$:

$$\frac{\|v\|_1}{\sqrt{n}} \le \|v\|_2 \le \sqrt{\|v\|_1 \|v\|_{\infty}}.$$

Theorem

For $v \in \mathbb{C}^n$:

$$\frac{\|v\|_1}{\sqrt{n}} \le \|v\|_2 \le \sqrt{\|v\|_1 \|v\|_{\infty}}.$$

Theorem

For any $x, y \in \mathbb{C}^n$, any $p, q \in [1, \infty]$ with 1/p + 1/q = 1:

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||x||_q.$$

WTS:

IIVII, E Ju . IIVIIZ

Hölden

Hölder

HÖLDER'S INEQUALITY. EXAMPLE

Theorem

For $v \in \mathbb{C}^n$:

$$\frac{\|v\|_1}{\sqrt{n}} \le \|v\|_2 \le \sqrt{\|v\|_1 \|v\|_{\infty}}.$$

Theorem

For $v \in \mathbb{C}^n$:

This is tight
$$||v||_r \le n^{1/r-1/s} ||v||_s$$
. $s=1$

SIGN-RANK

Let $A \in \{1, -1\}^{n \times n}$. Then signrk(A) is the minimum rank of B s.t. $sign(b_{ij}) = a_{ij}$ for all $i, i \in [n]$.

Un hounded-ennor communication completty

 $F: \{0,13^n \times \{0,13^n \rightarrow \{$

det non-det non-det nond quant went quant went

comm models

Un hounded-ennou comm.

compute S(x,y) with prob $>\frac{1}{2}$ Socy, $\frac{1}{2} + \frac{1}{2}\eta$

Alice 8 bob use private randomness

If we hard shared randomness
10/1/0/1/1
Alice
Then CC(every problem) =1
Alice: sends 1 1)f sfinst n bits of nordong
sends O.
Boh: Receives 1. Knows x => f(x, y) else. Random h: t.
Prob of success:
2-1 + (1-2-1) · = = = = + = >=
Important: Randomness is Private

SIGN-RANK

Let $A \in \{1, -1\}^{n \times n}$. Then $\underline{\operatorname{signrk}(A)}$ is the minimum rank of B s.t. $\underline{\operatorname{sign}(b_{ij})} = a_{ij}$ for all $i, i \in [n]$.

Theorem (Paturi, Simon)

Unbounded-error communication complexity of a problem is log(signrk(A)) of its communication matrix A.

Signek (A)
$$A \in S \pm 1S^{hen}$$
 $B \in \mathbb{R}^{hen}$ Sign $(bij) = aij$

min Rk $B \leftarrow Signek(A)$
 $B_1 = aij$
 $B_2 = aij$
 $B_2 = aij$
 $B_3 = aij$
 $B_2 = aij$
 $B_3 = aij$
 $B_4 = aij$
 $B_4 = aij$
 $B_6 = A$

Sometimes signek(A)
$$\leq Rk(A)$$

Ex. A $\begin{vmatrix} 1-1-1\\ 1+1-1\\ 1+1-1\\ 1+1-1\\ 2+1 \end{vmatrix}$ $= Rk(2\cdot T_R)$
 $= Rk(3\cdot T_R)$

Rk(A) = n-1 Signkh(A) = 2 Signk(A) = 2 Signk(A) = 2Rk(A)

Unhounded ernon Comm Comm = [ogz (signuk(A)) 21

• A vector $\sigma \in \{0,1\}^n$ is a zero-pattern of polynomials p_1,\ldots,p_n if there exists $x \in \mathbb{R}^t$ s.t. $p_i(x) = 0$ iff $\sigma_i = 0$

- A vector $\sigma \in \{0,1\}^n$ is a zero-pattern of polynomials p_1, \ldots, p_n if there exists $x \in \mathbb{R}^t$ s.t. $p_i(x) = 0$ iff $\sigma_i = 0$
- The number of zero-patterns is $\leq 2^n$

- A vector $\sigma \in \{0,1\}^n$ is a zero-pattern of polynomials p_1, \ldots, p_n if there exists $x \in \mathbb{R}^t$ s.t. $p_i(x) = 0$ iff $\sigma_i = 0$
- The number of zero-patterns is $\leq 2^n$

Theorem

For constant degree polynomials, the number of zero-patterns is $\leq n^t \ll 2^n$ (for small t)

· Non-rigid M:

· Non-rigid M:

· Non-rigid M:

• Each (out of n^2) entries on the left is a degree-2 polynomial of the entries on the right

 By the zero-pattern theorem, there are only a few zero-non-zero matrices low-degree polynomials can generate

 By the zero-pattern theorem, there are only a few zero-non-zero matrices low-degree polynomials can generate

In particular, only a few {0,1}-matrices

 By the zero-pattern theorem, there are only a few zero-non-zero matrices low-degree polynomials can generate

- In particular, only a few {0,1}-matrices
- · Therefore, a random {0,1}-matrix is rigid

 Brute Force 2ⁿ

SIGN-PATTERNS. EXAMPLE

Theorem

The number of <u>sign</u>-patterns of n constant-degree polynomials of t variables is $(also) \leq n^t$,

SIGN-PATTERNS. EXAMPLE

Theorem

The number of sign-patterns of n constant-degree polynomials of t variables is $(also) \leq n^t$.

Theorem [Alon et al 1985]

There exist matrices of high sign-rank. (There exist problems of high unbounded-error communication complexity.)