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POLYNOMIAL METHOD

- In order to prove an upper bound on the
number N of zero-patterns, we

- defined a polynomial for each zero
pattern

- showed that all N polynomials are linearly
Independent

- but they live in a low-dimensional space

- hence, an upper bound on N
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POLYNOMIAL METHOD. EXAMPLE

Theorem

Let X1, ..., X, € RY be points such that the
pairwise distances between them take two
values. Then

n = 0(d?).
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ZARANKIEWICZ PROBLEM

- In order to bound the number of edges in a
graph It often suffices to exclude some
local configurations

- We showed that a graph without bipartite
cligues Is not dense

Theorem ELLST]

Let s € N be a constant. The number of edges
in a Kss-free graph is O(n>="/%).
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ZARANKIEWICZ PROBLEM

- Concluded that a few changes in a matrix
leave an untouched matrix of size s x s

- Thus, matrices with non-zero minors are
(moderately) rigid



ZARANKIEWICZ PROBLEM. EXAMPLE

Theorem (Szemerédi-Trotter theorem)

n points and n lines in the plane have O(n*/3)
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HOLDER'S INEQUALITY
Theorem
For any x,y € C", any p,q € [1, co] with
1/p+1/qg=1:

n

> Iyl < IXllpIplq
=1
Zol'.sﬁ Botenol
- Connects different L, norms El2 £d; 2 Boy.y)
. |n Kovari-Sos-Turan Theorem, we had a
bound on sth moment of vertices’ degrees,
needed bound on number of edges
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Theorem
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HOLDER'S INEQUALITY. EXAMPLE

Theorem
Forv e C":
v H
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SIGN-RANK

Let A € {1, —=1}"". Then signrk(A) Is the
minimum rank of B s.t. sign(b;;) = a;; for all
1€ [n].
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SIGN-RANK

Let A € {1, —=1}"". Then signrk(A) Is the
minimum rank of B sit. sign(b;) = a;; for all
iien]

Theorem (Paturi, Simon)

Unbounded-error communication complexity
of a problem is log(signrk(A)) of its
communication matrix A.
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ZERO-PATTERNS

+ Avector o € {0,1}" Is a zero-pattern of
polynomials py, ..., py if there exists x € Rt
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ZERO-PATTERNS

-+ Avector o € {0,1}" Is a zero-pattern of
polynomials ps, ..., p, if there exists x € R!
st pi(x) =01ff ;=0

- The number of zero-patterns is < 2"

E—

Theorem

For constant degree polynomials, the number
of zero-patterns is g!ntl<< 2" (for small t)

- B polys
- Hvan
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ZERO-PATTERNS

- Non-rigid M:
¢ low-
— sparse +
rank
. L
— Spal’Se + X ‘
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- Each (out of n?) entries on the left is a
degree-2 polynomial of the entries on the right
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ZERO-PATTERNS

- By the zero-pattern theorem, there are only a
few zero-non-zero matrices low-degree
polynomials can generate

- In particular, only a few {0, 1}-matrices

- Therefore, a random {0,1}- matrlx 1S rigid
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SIGN-PATTERNS. EXAMPLE

Theorem

The number ofﬂv—pattems of n
constant-degree polynomials of t variables is
(also) < n',




SIGN-PATTERNS. EXAMPLE

Theorem

The number of sign-patterns of n
constant-degree polynomials of t variables is
(also) < nt.

Theorem [Aton et al (1335 1

There exist matrices of high sign-rank. (There
exist problems of high unbounded-error
communication complexity.)



